萃取分离技术.docx

上传人:b****6 文档编号:8557794 上传时间:2023-01-31 格式:DOCX 页数:11 大小:142.81KB
下载 相关 举报
萃取分离技术.docx_第1页
第1页 / 共11页
萃取分离技术.docx_第2页
第2页 / 共11页
萃取分离技术.docx_第3页
第3页 / 共11页
萃取分离技术.docx_第4页
第4页 / 共11页
萃取分离技术.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

萃取分离技术.docx

《萃取分离技术.docx》由会员分享,可在线阅读,更多相关《萃取分离技术.docx(11页珍藏版)》请在冰豆网上搜索。

萃取分离技术.docx

萃取分离技术

后处理的问题

  为什么对后处理的问题容易忽视呢?

我们平时所看到的各种文献尤其是学术性的研究论文对这一问题往往重视不够或者很轻视,他们重视的往往是新的合成方法,合成试剂等。

专利中对这一问题也是轻描淡写,因为这涉及到商业利润问题。

有机教科书中对这一问体更是没有谈论到。

只有参加过工业有机合成项目的人才能认识到这一问题的重要性,有时反应做的在好,后处理产生问题得不到纯的产品,企业损失往往巨大。

这时才认识到有机合成不光是合成方法的问题,还涉及到许多方面的问题,那一方面的问题考虑不周,都有可能前功尽弃。

后处理问题从哪里可以学到?

除了向有经验的科研人员多多请教外,自己也应处处留心,虽说各种文献中涉及较少,但是还有不少论文是涉及到的,这就要求自己多思考,多整理,举一反三。

另外,在科研工作中,应注意吸取经验,多多磨练。

  完成后处理问题的基本知识还是有机化合物的物理和化学性质,后处理就是这些性质的具体应用。

当然,首先要把反应做的很好,尽量减少副反应的发生,这样可以减轻后处理的压力。

因此,后处理还是考验一个人的基本功问题,只有化学学好了才有可能出色的完成后处理任务。

后处理根据反应的目的有不同的解决办法,如果在实验室中,只是为了发表论文,得到纯化合物的目的就是为了作各种光谱,那么问题就简单了,得到纯化合物的方法不外就是走柱子,TLC,制备色谱等方法,不用考虑太多的问题,而且得到的化合物还比较纯;如果是为了工业生产的目的,则问题就复杂了,尽量用简便、成本低的方法,实验室中的那一套就不行了,如果您还是采用实验室中的方法则企业就亏损了。

  后处理过程的优劣检验标准是:

(1)产品是否最大限度的回收了,并保证质量;

(2)原料、中间体、溶剂及有价值的副产物是否最大限度的得到了回收利用;(3)后处理步骤,无论是工艺还是设备,是否足够简化;(4)三废量是否达到最小。

后处理的几个常用而实用的方法:

(1)有机酸碱性化合物的分离提纯(碱提酸沉或酸提碱沉即是异提同分)

  具有酸碱性基团的有机化合物,可以得失质子形成离子化合物,而离子化合物与原来的母体化合物具有不同的物理化学性质。

碱性化合物用有机酸或无机酸处理得到胺盐,酸性化合物用有机碱或无机碱处理得到钠盐或有机盐。

根据有机化合物酸碱性的强弱,有机、无计酸碱一般为甲酸、乙酸、盐酸、硫酸、磷酸。

碱为三乙胺、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠等。

在一般情况下,离子化合物在水中具有相当大的溶解性,而在有机溶剂中溶解度很小,同时活性碳只能够吸附非离子型的杂质和色素。

利用以上的这些性质可对酸碱性有机化合物进行提纯。

以上性质对所有酸碱性化合物并不通用,一般情况下,分子中酸碱性基团分子量所占整个分子的分子量比例越大,则离子化合物的水溶性就越大,分子中含有的水溶性基团例如羟基越多,则水溶性越大,因此,以上性质适用于小分子的酸碱化合物。

对于大分子的化合物,则水溶性就明显降低。

  酸碱性基团包括氨基。

酸性基团包括:

酰氨基、羧基、酚羟基、磺酰氨基、硫酚基、1,3-二羰基化合物等等。

值得注意的是,氨基化合物一般为碱性基团,但是在连有强吸电子基团时就变为酸性化合物,例如酰氨基和磺酰氨基化合物,这类化合物在氢氧化钠、氢氧化钾等碱作用下就容易失去质子而形成钠盐。

  中合吸附法:

将酸碱性化合物转变为离子化合物,使其溶于水,用活性碳吸附杂质后过滤,则除去了不含酸碱性基团的杂质和机械杂质,再加酸碱中合回母体分子状态,这是回收和提纯酸碱性产品的方法。

由于活性碳不吸附离子,故有活性碳吸附造成的产品损失忽劣不计。

中和萃取法:

是工业过程和实验室中常见的方法,它利用酸碱性有机化合物生成离子时溶于水而母体分子状态溶于有机溶剂的特点,通过加入酸碱使母体化合物生成离子溶于水实现相的转移而用非水溶性的有机溶剂萃取非酸碱性杂质,使其溶于有机溶剂从而实现杂质与产物分离的方法。

  成盐法:

  对于非水溶性的大分子有机离子化合物,可使有机酸碱性化合物在有机溶剂中成盐析出结晶来,而非成盐的杂质依然留在有机溶剂中,从而实现有机酸碱性化合物与非酸碱性杂质分离,酸碱性有机杂质的分离可通过将析出的结晶再重结晶,从而将酸碱性有机杂质分离。

对于大分子的有机酸碱化合物的盐此时还可以采用水洗涤除去小分子的酸碱化合物已经成盐且具有水溶性的杂质。

对于水溶性的有机离子化合物,可在水中成盐后,将水用共沸蒸馏或直接蒸馏除去,残余物用有机溶剂充分洗涤几次,从而将杂质与产品分离。

  以上三种方法并不是孤立的,可根据化合物的性质和产品质量标准的要求,采用相结合的方法,尽量得到相当纯度的产品。

(2)几种特殊的有机萃取溶剂

  正丁醇:

大多数的小分子醇是水溶性的,例如甲醇、乙醇、异丙醇、正丙醇等。

大多数的高分子量醇是非水溶性的,而是亲脂性的能够溶于有机溶剂。

但是中间的醇类溶剂例如正丁醇是一个很好的有机萃取溶剂。

正丁醇本身不溶于水,同时又具有小分子醇和大分子醇的共同特点。

它能够溶解一些能够用小分子醇溶解的极性化合物,而同时又不溶于水。

利用这个性质可以采用正丁醇从水溶液中萃取极性的反应产物。

  丁酮:

性质介于小分子酮和大分子酮之间。

不像丙酮能够溶于水,丁酮不溶于水,可用来从水中萃取产物。

  乙酸丁酯:

性质介于小分子和大分子酯之间,在水中的溶解度极小,不像乙酸乙酯在水中有一定的溶解度,可从水中萃取有机化合物,尤其是氨基酸的化合物,因此在抗生素工业中常用来萃取头孢、青霉素等大分子含氨基酸的化合物。

  丁基叔丁基醚:

性质介于小分子和大分子醚之间,两者的极性相对较小,类似于正己烷和石油醚,二者在水中的溶解度较小。

可用于极性非常小的分子的结晶溶剂和萃取溶剂。

也可用于极性较大的化合物的结晶和萃取溶剂。

(3)做完反应后,应该首先采用萃取的方法,首先除去一部分杂质,这是利用杂质与产物在不同溶剂中的溶解度不同的性质

(4)稀酸的水溶液洗去一部分碱性杂质。

例如,反应物为碱性,而产物为中性,可用稀酸洗去碱性反应物。

例如胺基化合物的酰化反应。

(5)稀碱的水溶液洗去一部分酸性杂质。

反应物为酸性,而产物为中性,可用稀碱洗去酸性反应物。

例如羧基化合物的酯化反应。

化学学习考研复试调剂,提供免费真题笔记课件教材等,为化学工作者提供学习和科研、工作等的网络交流平台  

(6)用水洗去一部分水溶性杂质。

例如,低级醇的酯化反应,可用水洗去水溶性的反应物醇。

(7)如果产物要从水中结晶出来,且在水溶液中的溶解度又较大,可尝试加入氯化钠、氯化铵等无机盐,降低产物在水溶液中的溶解度-盐析的方法。

(8)有时可用两种不互溶的有机溶剂作为萃取剂,例如反应在氯仿中进行,可用石油醚或正己烷作为萃取剂来除去一部分极性小的杂质,反过来可用氯仿萃取来除去极性大的杂质。

(9)两种互溶的溶剂有时加入另外一种物质可变的互不相容,例如,在水作溶剂的情况下,反应完毕后,可往体系中加入无机盐氯化钠,氯化钾使水饱和,此时加入丙酮,乙醇,乙腈等溶剂可将产物从水中提取出来。

(10)结晶与重结晶的方法  基本原理是利用相似相容原理。

即极性强的化合物用极性溶剂重结晶,极性弱的化合物用非极性溶剂重结晶。

对于较难结晶的化合物,例如油状物、胶状物等有时采用混合溶剂的方法,但是混合溶剂的搭配很有学问,有时只能根据经验。

一般采用极性溶剂与非极性溶剂搭配,搭配的原则一般根据产物与杂质的极性大小来选择极性溶剂与非极性溶剂的比例。

若产物极性较大,杂质极性较小则溶剂中极性溶剂的比例大于非极性溶剂的比例;若产物极性较小,杂质极性较大,则溶剂中非极性溶剂的比例大于极性溶剂的比例。

较常用的搭配有:

醇-石油醚,丙酮-石油醚,醇-正己烷,丙酮-正己烷等。

但是如果产物很不纯或者杂质与产物的性质及其相近,得到纯化合物的代价就是多次的重结晶,有时经多次也提不纯。

这时一般较难除去的杂质肯定与产物的性质与极性及其相近。

除去杂质只能从反应上去考虑了。

(11)水蒸气蒸馏、减压蒸馏与精馏的方法

  这是提纯低熔点化合物的常用方法。

一般情况下,减压蒸馏的回收率相应较低,这是因为随着产品的不断蒸出,产品的浓度逐渐降低,要保证产品的饱和蒸汽压等于外压,必须不断提高温度,以增加产品的饱和蒸汽压,显然,温度不可能无限提高,即产品的饱和蒸汽压不可能为零,也即产品不可能蒸净,必有一定量的产品留在蒸馏设备内被设备内的难挥发组分溶解,大量的斧残既是证明。

  水蒸气蒸馏对可挥发的低熔点有机化合物来说,有接近定量的回收率。

这是因为在水蒸气蒸馏时,斧内所有组分加上水的饱和蒸汽压之和等于外压,由于大量水的存在,其在100℃时饱和蒸汽压已经达到外压,故在100℃以下时,产品可随水蒸气全部蒸出,回收率接近完全。

对于有焦油的物系来说,水蒸气蒸馏尤其适用。

因为焦油对产品回收有两个负面影响:

一是受平衡关系影响,焦油能够溶解一部分产品使其不能蒸出来;二是由于焦油的高沸点使蒸馏时斧温过高从而使产品继续分解。

,水蒸气蒸馏能够接近定量的从焦油中回收产品,又在蒸馏过程中避免了产品过热聚合,收率较减压蒸馏提高3-4%左右。

虽然水蒸气蒸馏能提高易挥发组分的回收率,但是,水蒸气蒸馏难于解决产物提纯问题,因为挥发性的杂质随同产品一同被蒸出来,此时配以精馏的方法,则不但保障了产品的回收率,也保证了产品质量。

应该注意,水蒸气蒸馏只是共沸蒸馏的一个特例,当采用其它溶剂时也可。

  共沸蒸馏不仅适用于产品分离过程,也适用于反应物系的脱水、溶剂的脱水、产品的脱水等。

它比分子筛、无机盐脱水工艺具有设备简单、操作容易、不消耗其它原材料等优点。

例如:

在生产氨噻肟酸时,由于分子中存在几个极性的基团氨基、羧基等,它们能够和水、醇等分子形成氢键,使氨噻肟酸中存在大量的游离及氢键的水,如采用一般的真空干燥等干燥方法,不仅费时,也容易造成产物的分解,这时可采用共沸蒸馏的方法将水分子除去,具体的操作为将氨噻肟酸与甲醇在回流下搅拌几小时,可将水分子除去,而得到无水氨噻肟酸。

又比如,当分子中存在游离的或氢键的甲醇时,可用另外一种溶剂,例如正己烷、石油醚等等,进行回流,可除去甲醇。

可见共沸蒸馏在有机合成的分离过程中占有重要的地位。

(12)超分子的方法,利用分子的识别性来提纯产物。

(13)脱色的方法

  一般采用活性炭、硅胶、氧化铝等。

活性炭吸附非极性的化合物与小分子的化合物,硅胶与氧化铝吸附极性强的与大分子的化合物,例如焦油等。

对于极性杂质与非极性杂质同时存在的物系,应将两者同时结合起来。

比较难脱色的物系,一般用硅胶和氧化铝就能脱去。

对于酸碱性化合物的脱色,有时比较难,当将酸性化合物用碱中和形成离子化合物而溶于水中进行脱色时,除了在弱碱性条件下脱色一次除去碱性杂质外,还应将物系逐渐中和至弱酸性,再脱色一次除去酸性杂质,这样就将色素能够完全脱去。

同样当将碱性化合物用酸中和至弱碱性溶于水进行脱色时,除了在弱酸性条件下脱色一次除去酸性杂质外,还应将物系逐渐中和至弱碱性,再脱色一次除去碱性杂质。

 

中药分离和纯化

(1)

(一)溶剂分离法:

一般是将上述总提取物,选用三、四种不同极性的溶剂,由低极性到高极性分步进行提取分离。

水浸膏或乙醇浸膏常常为胶伏物,难以均匀分散在低极性溶剂中,故不能提取完全,可拌人适量惰性填充剂,如硅藻土或纤维粉等,然后低温或自然干燥,粉碎后,再以选用溶剂依次提取,使总提取物中各组成成分,依其在不同极性溶剂中溶解度的差异而得到分离。

例如粉防己乙醇浸膏,碱化后可利用乙醚溶出脂溶性生物碱,再以冷苯处理溶出粉防己碱,与其结构类似的防己诺林碱比前者少一甲基而有一酚羟基,不溶于冷苯而得以分离。

利用中草药化学成分,在不同极性溶剂中的溶解度进行分离纯化,是最常用的方法。

  广而言之,自中草药提取溶液中加入另一种溶剂,析出其中某种或某些成分,或析出其杂质,也是一种溶剂分离的方法。

中草药的水提液中常含有树胶、粘液质、蛋白质、糊化淀粉等,可以加入一定量的乙醇,使这些不溶于乙醇的成分自溶液中沉淀析出,而达到与其它成分分离的目的。

例如自中草药提取液中除去这些杂质,或自白及水提取液中获得白及胶,可采用加乙醇沉淀法;自新鲜括楼根汁中制取天花粉素,可滴人丙酮使分次沉淀析出。

目前,提取多糖及多肽类化合物,多采用水溶解、浓缩、加乙醇或丙酮析出的办法。

  此外,也可利用其某些成分能在酸或碱中溶解,又在加碱或加酸变更溶液的pH后,成不溶物而析出以达到分离。

例如内酯类化合物不溶于水,但遇碱开环生成羧酸盐溶于水,再加酸酸化,又重新形成内酯环从溶液中析出,从而与其它杂质分离;生物碱一般不溶于水,遇酸生成生物碱盐而溶于水,再加碱碱化,又重新生成游离生物碱。

这些化合物可以利用与水不相混溶的有机溶剂进行萃取分离。

一般中草药总提取物用酸水、碱水先后处理,可以分为三部分:

溶于酸水的为碱性成分(如生物碱),溶于碱水的为酸性成分(如有机酸),酸、碱均不溶的为中性成分(如甾醇)。

还可利用不同酸、碱度进一步分离,如酸性化台物可以分为强酸性、弱酸性和酷热酚性三种,它们分别溶于碳酸氢钠、碳酸钠和氢氧化钠,借此可进行分离。

有些总生物碱,如长春花生物碱、石蒜生物碱,可利用不同rH值进行分离。

但有些特殊情况,如酚性生物碱紫董定碱(corydine)在氢氧化钠溶液中仍能为乙醚抽出,蝙蝠葛碱(dauricins)在乙醚溶液中能为氢氧化钠溶液抽出,而溶于氯仿溶液中则不能被氢氧化钠溶液抽出;有些生物碱的盐类,如四氢掌叶防己碱盐酸盐在水溶液中仍能为氯仿抽出。

这些性质均有助于各化合物的分离纯化。

  

(二)两相溶剂萃取法:

  1.萃取法:

两相溶剂提取又简称萃取法,是利用混合物中各成分在两种互不相溶的溶剂中分配系数的不同而达到分离的方法。

萃取时如果各成分在两相溶剂中分配系数相差越大,则分离效率越高、如果在水提取液中的有效成分是亲脂性的物质,一般多用亲脂性有机溶剂,如苯、氯仿或乙醚进行两相萃取,如果有效成分是偏于亲水性的物质,在亲脂性溶剂中难溶解,就需要改用弱亲脂性的溶剂,例如乙酸乙酯、丁醇等。

还可以在氯仿、乙醚中加入适量乙醇或甲醇以增大其亲水性。

提取黄酮类成分时,多用乙酸乙脂和水的两相萃取。

提取亲水性强的皂甙则多选用正丁醇、异戊醇和水作两相萃取。

不过,一般有机溶剂亲水性越大,与水作两相萃取的效果就越不好,因为能使较多的亲水性杂质伴随而出,对有效成分进一步精制影响很大。

  两相溶剂萃取在操作中还要注意以下几点:

  1)先用小试管猛烈振摇约1分钟,观察萃取后二液层分层现象。

如果容易产生乳化,大量提取时要避免猛烈振摇,可延长萃取时间。

如碰到乳化现象,可将乳化层分出,再用新溶剂萃取;或将乳化层抽滤,或将乳化层稍稍加热;或较长时间放置并不时旋转,令其自然分层。

乳化现象较严重时,可以采用二相溶剂逆流连续萃取装置。

  2)水提取液的浓度最好在比重1.1~1.2之间,过稀则溶剂用量太大,影响操作。

  3)溶剂与水溶液应保持一定量的比例,第一次提取时,溶剂要多一些,一般为水提取液的1/3,以后的用量可以少一些,一般1/4-1/6。

  4)一般萃取3~4次即可。

但亲水性较大的成分不易转入有机溶剂层时,须增加萃取次数,或改变萃取溶剂。

  萃取法所用设备,如为小量萃取,可在分液漏斗中进行;如系中量萃取,可在较大的适当的下口瓶中进行。

在工业生产中大量萃取,多在密闭萃取罐内进行,用搅拌机搅拌一定时间,使二液充分混合,再放置令其分层;有时将两相溶液喷雾混含,以增大萃取接触,提高萃取效率,也可采用二相溶剂逆流连续萃取装置。

  2.逆流连续萃取法:

是一种连续的两相溶剂萃取法。

其装置可具有一根、数根或更多的萃取管。

管内用小瓷圈或小的不锈钢丝圈填充,以增加两相溶剂萃取时的接触面。

例如用氯仿从川楝树皮的水浸液中萃取川楝素。

将氯仿盛于萃取管内,而比重小于氯仿的水提取浓缩液贮于高位容器内,开启活塞,则水浸液在高位压力下流入萃取管,遇瓷圈撞击而分散成细粒,使与氯仿接触面增大,萃取就比较完全。

如果一种中草药的水浸液需要用比水轻的苯、乙酸乙酯等进行萃取,则需将水提浓缩液装在萃取管内,而苯、乙酸乙酯贮于高位容器内。

萃取是否完全,可取样品用薄层层析、纸层析及显色反应或沉淀反应进行检查。

  3.逆流分配法(CounterCurrentDistribution,CCD):

逆流分配法又称逆流分溶法、逆流分布法或反流分布法。

逆流分配法与两相溶剂逆流萃取法原理一致,但加样量一定,并不断在一定容量的两相溶剂中,经多次移位萃取分配而达到混合物的分离。

本法所采用的逆流分布仪是由若干乃至数百只管子组成。

若无此仪器,小量萃取时可用分液漏斗代替。

预先选择对混合物分离效果较好,即分配系数差异大的两种不相混溶的溶剂。

并参考分配层析的行为分析推断和选用溶剂系统,通过试验测知要经多少次的萃取移位而达到真正的分离。

逆流分配法对于分离具有非常相似性质的混合物,往往可以取得良好的效果。

但操作时间长,萃取管易因机械振荡而损坏,消耗溶剂亦多,应用上常受到一定限制。

  4.液滴逆流分配法:

液滴逆流分配法又称液滴逆流层析法。

为近年来在逆流分配法基础上改进的两相溶剂萃取法。

对溶剂系统的选择基本同逆流分配法,但要求能在短时间内分离成两相,并可生成有效的液滴。

由于移动相形成液滴,在细的分配萃取管中与固定相有效地接触、摩擦不断形成新的表面,促进溶质在两相溶剂中的分配,故其分离效果往往比逆流分配法好。

且不会产生乳化现象,用氮气压驱动移动相,被分离物质不会因遇大气中氧气而氧化。

本法必须选用能生成液滴的溶剂系统,且对高分子化合物的分离效果较差,处理样品量小(1克以下),并要有一定设备。

应用液滴逆流分配法曾有效地分离多种微量成分如柴胡皂甙原小檗碱型季铵碱等。

液滴逆流分配法的装置,近年来虽不断在改进,但装置和操作较繁。

目前,对适用于逆流分配法进行分离的成分,可采用两相溶剂逆流连续萃取装置或分配柱层析法进行。

  (三)沉淀法:

是在中草药提取液中加入某些试剂使产生沉淀,以获得有效成分或除去杂质的方法。

  1.铅盐沉淀法:

铅盐沉淀法为分离某些中草药成分的经典方法之一。

由于醋酸铅及碱式醋酸铅在水及醇溶液中,能与多种中草药成分生成难溶的铅盐或络盐沉淀,故可利用这种性质使有效成分与杂质分离。

中性醋酸铅可与酸性物质或某些酚性物质结合成不溶性铅盐。

因此,常用以沉淀有机酸、氨基酸、蛋白质、粘液质、鞣质、树脂、酸性皂甙、部分黄酮等。

可与碱式醋酸铅产生不溶性铅盐或络合物的范围更广。

通常将中草药的水或醇提取液先加入醋酸铅浓溶液,静置后滤出沉淀,并将沉淀洗液并入滤液,于滤液中加碱式醋酸铅饱和溶液至不发生沉淀为止,这样就可得到醋酸铅沉淀物、碱式醋酸铅沉淀物及母液三部分。

  然后将铅盐沉淀悬浮于新溶剂中,通以硫化氢气体,使分解并转为不溶性硫化铅而沉淀。

含铅盐母液亦须先如法脱铅处理,再浓缩精制。

硫化氢脱铅比较彻底,但溶液中可能存有多余的硫化氢,必须先通人空气或二氧化碳让气泡带出多余的硫化氢气体,以免在处理溶液时参与化学反应。

新生态的硫化铅多为胶体沉淀,能吸咐药液中的有效成分,要注意用溶剂处理收回。

脱铅方法,也可用硫酸、磷酸、硫酸钠、磷酸钠等除铅,但硫酸铅、磷酸铅在水中仍有一定的溶解度,除铅不彻底。

用阳离子交换树脂脱铅快而彻底,但要注意药液中某些有效成分也可能被交换上去,同时脱铅树脂再生也较困难。

还应注意脱铅后溶液酸度增加,有时需中和后再处理溶液,有时可用新制备的氢氧化铅、氢氧化铝、氢氧化铜或碳酸铅、明矾等代替醋酸铅、碱式醋酸铅。

例如在黄芩水煎液中加入明矾溶液,黄芩甙就与铝盐络合生成难溶于水的络化物而与杂质分离,这种络化物经用水洗净就可直接供药用。

  2.试剂沉淀法:

例如在生物碱盐的溶液中,加入某些生物碱沉淀试剂(见生物碱性质下),则生物碱生成不溶性复盐而析出。

水溶性生物碱难以用萃取法提取分出,常加入雷氏铵盐使生成生物碱雷氏盐沉淀析出。

又如橙皮甙、芦丁、黄芩甙、甘草皂甙均易溶于碱性溶液,当加入酸后可使之沉淀析出。

某些蛋白质溶液,可以变更溶液的pH值利用其在等电点时溶解度最小的性质而使之沉淀析出。

此外,还可以用明胶、蛋白溶液沉淀鞣质;胆甾醇也常用以沉淀洋地黄皂甙等。

可根据中草药有效成分和杂质的性质,适当选用。

  (四)盐析法:

盐析法是在中草药的水提液中、加入无机盐至一定浓度,或达到饱和状态,可使某些成分在水中的溶解度降低沉淀析出,而与水溶性大的杂质分离。

常用作盐析的无机盐有氯化钠、硫酸钠、硫酸镁、硫酸铵等。

例如三七的水提取液中加硫酸镁至饱和状态,三七皂甙乙即可沉淀析出,自黄藤中提取掌叶防己碱,自三颗针中提取小檗碱在生产上都是用氯化钠或硫酸按盐析制备。

有些成分如原白头翁素、麻黄碱、苦参碱等水溶性较大,在提取时,亦往往先在水提取液中加入一定量的食盐,再用有机溶剂萃取。

作者:

highdragon

  (五)透析法:

透析法是利用小分子物质在溶液中可通过半透膜,而大分子物质不能通过半透膜的性质,达到分离的方法。

例如分离和纯化皂甙、蛋白质、多肽、多糖等物质时,可用透析法以除去无机盐、单糖、双糖等杂质。

反之也可将大分子的杂质留在半透膜内,而将小分子的物质通过半透膜进入膜外溶液中,而加以分离精制:

透析是否成功与透析膜的规格关系极大。

透析膜的膜孔有大有小,要根据欲分离成分的具体情况而选择。

透析膜有动物性膜、火棉胶膜、羊皮纸膜(硫酸纸膜)、蛋白质胶膜、玻璃纸膜等。

油常多用市售的玻璃纸或动物性半透膜扎成袋状,外面用尼龙网袋加以保护,小心加入欲透析的样品溶液,悬挂在清水容器中。

经常更换清水使透析膜内外溶液的浓度差加大,必要时适当加热,并加以搅拌,以利透析速度加快。

为了加快透析速度,还可应用电透析法,即在半在半透膜旁边纯溶剂两端

  放置二个电极,接通电路,则透析膜中的带有正电荷的成分如无机阳离子、生物碱等向阴极移动,而带负电共荷的成分如无机阴离子、有机酸等则向阳极移动,中性化合物及高分子化合物则留在透析膜中。

透析是否完全,须取透析膜内溶液进行定性反应检查。

  一般透析膜可以自制:

动物半透膜如猪、牛的膀胱膜、用水洗净,再以乙醚脱脂,,即可供用;羊皮纸膜可将滤纸浸入50%的硫酸15~60分钟,取出铺在板上,以水冲洗制得。

其膜孔大小与硫酸浓度、浸泡时间以及用水冲洗速度有关;火棉胶膜系将火棉胶溶于乙醚及无水乙醇,涂在板上,干后放置水中即可供用,其膜孔大小与溶剂种类、溶剂挥发速度有关,溶剂中加入适量水可使膜孔增大,加入少量醋酸可使膜孔缩小;蛋白质胶(明胶)膜可用20%明胶涂于细布上,阴干后放水中,再加甲醛使膜凝固,冲洗干净即可供用。

近来商品有透析膜管成品出售,国外习称“ViskingDialysisTubing”,有各种大小厚度规格,可供不同大小分子量的多糖、多肽透析时选用。

  (六)结晶、重结晶和分步结晶法:

鉴定中草药化学成分,研究其化学结构,必须首先将中草药成分制备成单体纯品。

在常温下,物质本身性质是液体的化台物,可分别用分馏法或层析法进行分离精制。

一般他说,中草药化学成分在常温下多半是固体的物质,都具有结晶他的通性,可以根据溶解度的不同用结晶法来达到分离精制的目的。

研究中草药化学成分时,一旦获得结晶,就能有效地进一步精制成为单体纯品。

纯化台物的结晶有一定的熔点和结晶学的特征,有利于鉴定。

如果鉴定的物质不是单体纯品,不但不能得出正确的结论,还会造成工作上的浪费。

因此,求得结晶并制备成单体纯品,就成为鉴定中草药成分、研究其分子结构重要的一步。

  1.杂质的除去:

中草药经过提取分离所得到的成分,大多仍然含有杂质,或者是混合成分。

有时即使有少量或微量杂质存在,也能阻碍或延缓结晶的形成。

所以在制备结晶时,必须注意杂质的干扰,应力求尽可能除去。

有时可选用溶剂溶出杂质,或只溶出所需要的成分。

有时可用少量活性炭等进行脱色处理,以除去有色杂质。

有时可通过氧化铝,硅胶或硅藻土短柱处理后,再进行制备结晶。

但应用吸附剂除去杂质时,要注意所需要的成分也可能被吸附而损失。

此外,层析法更是分离制备单体纯品所常用的有效方法。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1