三年级数学下册知识导引新人教版.docx

上传人:b****5 文档编号:8480446 上传时间:2023-01-31 格式:DOCX 页数:13 大小:51.58KB
下载 相关 举报
三年级数学下册知识导引新人教版.docx_第1页
第1页 / 共13页
三年级数学下册知识导引新人教版.docx_第2页
第2页 / 共13页
三年级数学下册知识导引新人教版.docx_第3页
第3页 / 共13页
三年级数学下册知识导引新人教版.docx_第4页
第4页 / 共13页
三年级数学下册知识导引新人教版.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

三年级数学下册知识导引新人教版.docx

《三年级数学下册知识导引新人教版.docx》由会员分享,可在线阅读,更多相关《三年级数学下册知识导引新人教版.docx(13页珍藏版)》请在冰豆网上搜索。

三年级数学下册知识导引新人教版.docx

三年级数学下册知识导引新人教版

【寒假预习】三年级数学(下册)知识导引(新人教版)

★数学考试应注意:

1、用手指着认真读题至少两遍;

2、遇到不会的题不要停留太长时间,可在题目的前面做记号。

(如:

“?

”)

3、画图、连线时必须用尺子;

4、检查时,要注意是否有漏写、少写的情况;

第一单元位置与方向

1、①(东与西)相对,(南与北)相对,

(东南—西北)相对,(西南—东北)相对。

②清楚以谁为标准来判断位置。

③理解位置是相对的,不是绝对的。

2、地图通常是按(上北、下南、左西、右东)来绘制的。

(做题时先标出北南西东。

3、会看简单的路线图,会描述行走路线。

一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。

同一个地点可以有不同的描述位置的方式。

(例如:

学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。

)同一个地点有不同的行走路线。

一般找比较近的路线走。

4.、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

5.、生活中的方位知识:

①北斗星永远在北方。

②影子与太阳的方向相对。

③早上太阳在东方,中午在南方,傍晚在西方。

④风向与物体倾斜的方向相反。

(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)

第二单元除数是一位数的除法

1、口算时要注意:

(1)0除以任何数(0除外)都等于0;

(2)0乘以任何数都得0;

(3)0加任何数都得任何数本身;

(4)任何数减0都得任何数本身。

2、没有余数的除法:

被除数÷除数=商

商×除数=被除数

被除数÷商=除数

有余数的除法:

被除数÷除数=商……余数

商×除数+余数=被除数

(被除数—余数)÷商=除数

3、笔算除法顺序:

确定商的位数,试商,检查,验算。

(1)一位数除两位数(商是两位数)的笔算方法:

先用一位数除十位上的数,如果有余数,要把余数和个位上的数合起来,再用除数去除。

除到被除数的哪一位,就把商写在那一位上面。

(2)一位数除三位数的笔算方法:

先从被除数的最高位除起,如果最高位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。

(3)除法的验算方法:

没有余数的除法的验算方法:

商×除数:

被除数;

有余数的除法的验算方法:

商×除数+余数=被除数。

4、基本规律:

(1)从高位除起,除到哪一位,就把商写在那一位;

(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。

(3)哪一位有余数,就和后面一位上的数合起来再除;

(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。

第二单元课外知识拓展

5、2、3、5倍数的特点

2的倍数:

个位上是2、4、6、8、0的数是2的倍数。

5的倍数:

个位上是0或5的数是5的倍数。

3的倍数:

各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。

比如:

462,4+6+2=12,12是3的倍数,所以462是3的倍数。

6、关于倍数问题:

两数和÷倍数和=1倍的数

两数差÷倍数差=1倍的数

例:

已知甲数是乙数的5倍,甲乙两数的和是24,求甲乙两数?

这里把乙数看成1倍的数,那甲数就是5倍的数。

它们加起来就相当于乙数的6倍了,而它们加起来的和是24。

这也就相当于说乙数的6倍是24。

所以乙数为:

24÷6=4,甲数为:

4×5=20

同样:

若已知甲数是乙数的5倍,甲乙两数之差是24,求甲乙两数?

这里把乙数看成1倍的数,那甲数就是5倍的数。

它们的差就相当于乙数的4倍了,而它们的差是24。

这也就相当于说乙数的4倍是24。

所以乙数为:

24÷4=6,甲数为:

6×5=30

7、和差问题

(两数和—两数差)÷2=较小的数

(两数和+两数差)÷2=较大的数

例:

已知甲乙两数之和是37,两数之差是19,求甲乙两数各是多少?

如图:

解析:

如果给甲数加上“乙数比甲数多的部分(两数差)”(虚线部分),则由图知,甲数+两数差=乙数。

如是:

甲数+两数差+乙数=甲数+乙数+两数差=两数和+两数差

又有:

甲数+两数差+乙数=乙数+乙数=乙数×2

知道:

两数和+两数差=乙数×2

(两数和+两数差)÷2=乙数

解:

假设乙数是较大的数。

乙:

(37+19)÷2=28甲:

28-19=9

8、锯木头问题。

王叔叔把一根木条锯成4段用12分钟,锯成5段需要多长时间?

如图,锯成4段只用锯3次,也就是锯3次要12分钟,那么可以知道锯一次要:

12÷3=4(分钟)

而锯成5段只用锯4次,所需时间为:

4×4=16(分钟)

9、巧用余数解决问题。

①()÷8=6……(),求被除数最大是,最小是。

根据除法中“余数一定要比除数小”规则,余数最大应是7,最小应是1。

再由公式:

商×除数+余数=被除数,知道被除数最大应是6×8+7=55,最小应是6×8+1=49。

②少年宫有一串彩灯,按1红,2黄,3绿排列着,请你猜一猜第89个是什么颜色?

……

由图可知,彩灯一组为:

1+2+3=6(个),照这样下去,89÷6=14(组)……5(个)第89个已经有像上面的这样6个一组14组,还多余5个;这5个再照1红,2黄,3绿排列下去,第5个就是绿色的了。

③加一份和减一份的余数问题。

例1:

38个去划船,每条船限坐4个,一共要几条船?

38÷4=9(条)……2(人)

余下的2人也要1条船,9+1=10条。

答:

一共要10条船。

例2:

做一件成人衣服要3米布,现在有17米布,能做几件成人衣服?

17÷3=5(件)……2(米)

余下的2米布不能做一件成人衣服

答:

能做5件成人衣服。

第三单元复式统计表

1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。

2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。

第四单元两位数乘以两位数

口算乘法

1、两位数乘一位数的口算方法:

(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加

(2)在脑中列竖式计算。

2、整百整十数乘一位数的口算方法:

(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。

(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。

(3)在脑中列竖式计算。

3、一个数与10相乘的口算方法:

一位数与10相乘,就是把这个数的末尾添上一个0。

4、两位数乘整十数的口算方法:

先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。

小技巧:

口算乘法:

整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

如:

30×500=15000可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000

笔算乘法

先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。

注意事项

1.估算:

18×22,可以先把因数看成整十、整百的数,再去计算。

→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。

2、有大约字样的一般要估算。

3、凡是问够不够,能不能等的题,都要三大步:

①计算、②比较、③答题。

→别忘了比较这一步。

几个特殊数:

25×4=100,125×8=1000

4、相关公式:

因数×因数=积

积÷因数=另一个因数

5、两位数乘两位数积可能是(三)位数,也可能是(四)位数。

6、一个两位数与11的速算技巧:

第五单元面积

面积和面积单位:

1.常用的面积单位有:

(平方厘米)、(平方分米)、(平方米)。

2.理解面积的意义和面积单位的意义。

面积:

物体表面或封闭图形的大小,叫做它们的面积。

1平方米:

边长是1米的正方形,它的面积是1平方米。

1平方分米:

边长是1分米的正方形,它的面积是1平方分米。

1平方厘米:

边长是1厘米的正方形,它的面积是1平方厘米。

3.在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。

例如1平方厘米(指甲盖)、1平方分米(电脑光盘或电线插座)、1平方米(教室侧面的小展板)。

4.区分长度单位和面积单位的不同。

长度单位测量线段的长短,面积单位测量面的大小。

5.比较两个图形面积的大小,要用(统一)的面积单位来测量。

背熟:

(1)边长(1厘米)的正方形,面积是(1平方厘米)。

(反过来也要会说。

面积是1平方厘米的正方形,它的边长是1厘米。

(2)边长(1分米)的正方形,面积是(1平方分米)。

(3)边长(1米)的正方形,面积是(1平方米)。

(4)边长是(100米)的正方形面积是(1公顷),也就是(10000平方米)。

(5)边长是(1千米)的正方形面积是1平方千米。

面积单位进率和土地面积单位:

1.常用的土地面积单位有(公顷)和(平方千米)。

★“公顷”→测量菜地面积、果园面积、建筑面积

★“平方千米”→测量城市土地面积、国家面积

1公顷:

边长是100米的正方形,它的面积是1公顷。

1平方千米:

边长是1千米的正方形,它的面积是1平方千米。

1公顷=10000平方米

1平方千米=100公顷

1平方千米=1000000平方米

2.正确理解并熟记相邻的面积单位之间的进率。

①进率100:

1平方米=100平方分米

1平方分米=100平方厘米

1平方千米=100公顷

②进率10000:

1公顷=10000平方米

1平方米=10000平方厘米

③进率1000000:

1平方千米=1000000平方米

④相邻两个常用的长度单位之间的进率是(10)。

相邻两个常用的面积单位之间的进率是(100)。

背熟公式

1、周长公式:

长方形的周长=(长+宽)×2

长=周长÷2-宽

或者:

(周长-长×2)÷2=宽

宽=周长÷2-长

或者:

(周长-宽×2)÷2=长

正方形的周长=边长×4

正方形的边长=周长÷4

2、面积公式:

长方形的面积=长×宽

正方形的面积=边长×边长

长方形的周长=(长+宽)×2

正方形的周长=边长×4

已知面积求长:

长=面积÷宽

已知面积求边长:

边长=面积开平方

已知周长求长:

长=周长÷2-宽

已知面积求边长:

边长=面积÷4

A、正确区分长方形和正方形的周长和面积的意义,并能正确运用上面的4个计算公式求周长和面积。

归类:

什么样的问题是求周长?

(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等)什么样的问题是求面积?

或与面积有关?

(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地、裁手帕的等等)

B、长方形或正方形纸的剪或拼。

有两个或两个以上长方形或正方形拼成新的图形后的面积与周长。

从一个图形中(通常是长方形)剪掉一个图形(最大的正方形等)求剪掉部分的面积或周长、求剩下部分的面积或周长。

要求先画图,再标上所用数据,最后列式计算。

C、刷墙的(有的中间有黑板、窗户等):

用大面积-小面积。

熟练运用进率进行面积单位之间的换算。

掌握换算的方法。

1、低级单位——高级单位:

数量÷它们间的进率

如:

零钱换大钱,张数减少;300平方分米=3平方米

1、高级单位——低级单位:

数量×们间的进率

如:

大钱换零钱,张数增多;5平方千米=500公顷

注意:

(1)面积相等的两个图形,周长不一定相等。

周长相等的两个图形,面积不一定相等。

(2)大单位换算小单位(乘它们之间的进率)

小单位换算大单位(除以它们之间的进率)

(3)长度单位和面积单位的单位不同,无法比较。

(4)周长相等的两个长方形,面积不一定相等。

面积相等的两个长方形,周长也不一定相等。

第六单元年、月、日

(一)年、月、日

1、常用的时间单位有:

(年、月、日)和(时、分、秒)。

2、重要的日子:

1949年10月1日,中华人民共和国成立。

1月1日元旦节、3月12日植树节,5月1日劳动节,6月1日儿童节,7月1日建党节,8月1日建军节,9月10日教师节,10月1日国庆节

3、熟记每个月的天数:

知道大月一个月有31天,小月一个月有30天。

平年二月28天,闰年二月29天,二月既不是大月也不是小月。

一年有12个月(7大4小1特殊)

可借助歌谣记忆:

一、三、五、七、八、十、腊(即十二月),

三十一天永不差。

四六九冬三十天,只有二月二十八。

每逢四年闰一日,一定要在二月加。

4、熟记全年天数:

平年2月28天,闰年2月29天。

平年365天,闰年366天。

上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。

(1)季度:

(一年分四季度,每3个月为一个季度)

一、二、三月是第一季度(平年有90天,闰年有91天),

四、五、六月是第二季度(有91天),

七、八、九月是第三季度(92天),

十、十一、十二月是第四季度(有92天)。

(2)会计算每个季度有多少天,连续几个月共有多少天。

连续两个月共62天的是:

7月和8月,12月和第二年的1月;一年中连续两个月共62天的是:

7月和8月。

(3)给出一个天数会计算有几个星期零几天。

如:

第三季度有(92)天,有(13)个星期零

(1)天。

平年全年有(365)天,是(52)个星期零

(1)天。

(4)公历年份是4的倍数的一般都是闰年:

一般情况下可以用年份除以4的方法判断平年闰年。

年份除以4有余数是平年,没有余数是闰年。

如:

1978÷4=494……2,1978年是平年。

1988÷4=497,1988年是闰年。

(5)公历年份是整百数的必须是400的倍数才是闰年。

如1900年是平年,2000年是闰年。

5、经过的天数的计算:

公式:

结束时间—开始时间+1

例如:

6月12到8月17日是多少天?

6月12日~~6月30日30-12+1=9(天)

7月有:

31(天)8月1日~~8月17日有:

17(天)

9+31+17=57(天)

6、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。

如:

小华1994年6月出生,到今年6月(15岁)。

小华今年12岁,他是(1997年)出生的。

7、通常每4年里有

(1)个闰年,(3)个平年。

(如果说某个人不是每年都能过到生日,8岁过两次生日,12岁过3次生日,那么他的生日就是2月29日。

8、推算星期几的方法:

例如:

已知今天星期三,再过50天星期几?

解析:

因为一个星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7个星期多一天,所以第50天是星期三往后数一天,即星期四。

9、会计算到今年经过的年份:

就用2013-给的年份

例如:

中华人民共和国成立于1949年10月1日,到今年建国多少周年?

熟记中华人民共和国建国的时间是1949年10月1日;

算式:

2013-1949=64(年)

(二)24计时法

1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。

(如凌晨3时、早上8时、上午10时、下午2时、晚上8时)

2、24时计时法:

就是把一天分成24时表示,在表示的时间前可以加或可以不加表示的大概时间段得词语。

3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12。

如:

普通计时法24时计时法

上午9时===9时或9:

00

晚上9时===21时或21:

00

4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。

比如:

16时等于16-12=下午4时。

(必须加前缀)

5、计算经过时间,就是用结束时刻减开始时刻。

结束时刻-开始时刻=时间段(经过时间)

比如:

10:

00开始营业,22:

00结束营业,

营业时间为:

22:

00—10:

00=12(小时)

★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算)

比如:

某商品早上8:

00开始营业,下午6:

00停止营业,一天营业多少时间?

下午6:

00=18:

0018:

00-8:

00=10(小时)

6、认识时间与时刻的区别:

(时间是一段,时刻是一个点)

如:

火车11:

00出发,21时30分到达,火车运行时间是(10时30分),注意不要写成(10:

30)。

正确的列式格式为:

21时30分-11时=10时30分,不能用电子表的形式相减。

再如:

火车19时出发,第二天8时到达,火车运行时间是(13小时)。

像这种跨越两天的,可以先计算第一天行驶了多长时间:

24-19=5(时),再加上第二天行驶的8个小时:

5+8=13(时)

又如:

一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?

先换算,155分=2时35分,再计算。

7、会根据给出的信息制作月历和年历。

如:

某年8月1日是星期二,制作8月份的月历。

再如:

某年4月30日是星期

四,制作5月份月历。

制作年历步骤:

第一:

确定1月1日是星期几;

第二:

确定12个月怎样排列,

第三:

把休息日用另外的颜色标出来。

8、时间单位进率:

1世纪=100年

1年=12个月

1天(日)=24小时

1小时=60分钟

1分钟=60秒钟

1周=7天

第七单元小数的初步认识

1、小数的意义:

像3.45,0.85,2.60,36.6,1.2和1.5这样的数叫做小数。

小数是分数的另一种表现形式。

2、小数的认、读、写:

限于小数部分不超过两位的小数。

整数部分按整数的读法(几百几十几)。

小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。

例如:

127.005读作:

一百二十七点零零五。

3、小数与分数的关系、互换。

小数不同表示的分数就不同。

例如:

0.5=5/100.50=50/100

4、运用元/角/分、米/分米/厘米的知识写小数;把7角、7分改写成以元作单位的小数。

5、把“单位1”平均分成10份,每份是它的十分之一,也就是0.1

把“单位1”平均分成100份,每份是它的百分之一,也就是0.01

6、分母是10的分数写成一位小数(0.1),

分母是100的分数写成两位小数(0.01)。

7、比较两个小数的大小:

先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。

8、比大小的两种情况:

跑步是数越少越好;跳远、跳高是数越大越好。

9、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。

10、小数加减法计算:

(尤其注意:

12-3.9;9+8.3等题的计算。

11、小数不一定比整数小。

(如:

5.1>5;1.3>1等)

第八单元数学广角-搭配

(二)

简单的排列:

有序排列才能做到不重复、不遗漏。

简单的组合:

组合问题可以用连线的方法来解决。

组合与排列的区别:

排列与事物的顺序有关,而组合与事物的顺序无关

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 工学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1