风光互补LED路灯方案讲解.docx

上传人:b****6 文档编号:8462594 上传时间:2023-01-31 格式:DOCX 页数:22 大小:283.52KB
下载 相关 举报
风光互补LED路灯方案讲解.docx_第1页
第1页 / 共22页
风光互补LED路灯方案讲解.docx_第2页
第2页 / 共22页
风光互补LED路灯方案讲解.docx_第3页
第3页 / 共22页
风光互补LED路灯方案讲解.docx_第4页
第4页 / 共22页
风光互补LED路灯方案讲解.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

风光互补LED路灯方案讲解.docx

《风光互补LED路灯方案讲解.docx》由会员分享,可在线阅读,更多相关《风光互补LED路灯方案讲解.docx(22页珍藏版)》请在冰豆网上搜索。

风光互补LED路灯方案讲解.docx

风光互补LED路灯方案讲解

电子科技有限公司

公司简介

 

 

第一章风光互补路灯系统介绍

目前,在欧洲、日本、美国等发达国家正在普及风光互补路灯/太阳能路灯/风力机路灯系统。

这几种新型路灯都是集环保和节能为一体的产品,随着全球常规能源短缺情况的加剧,风能和太阳能这两种清洁可再生的自然能源的利用将会普及,这三种新型路灯代表着未来路灯的发展方向。

具有亮度高、安装简便、工作稳定可靠、不敷设电缆、不消耗常规能源、使用寿命长等优点,属于当今社会大力提倡推广的可再生能源产品路灯是我们生活中最必需的日常室外照明设备,它给我们夜晚的生活带来光明,把城市装点得多姿多彩。

但同时路灯也是一个耗电大户,由于路灯的低压输电线路长,输电线路上的线损也很大,特别是远离低压变电站的市郊公路、旅游景区、开发区和高速公路更是铺设电缆成本高,线损巨大。

由于这个原因,我国很多市郊公路和高速公路及较偏僻地区都没有安装路灯,因此带来了许多社会治安及交通安全问题,也阻碍了当地经济及交通的发展。

  中国在十届人大四次会议的政府工作报告中,提出了建设资源节约型社会,发展循环经济的任务和政策措施,这标志着我国进入了可持续发展的新阶段,也为可再生能源产品在国家建设发展中的应用创造了机遇。

推广风光互补路灯系统将为社会节约巨大能源,发展当地经济,解决社会治安及交通问题提供方案。

也是对全社会普及可再生能源知识的最有成效的宣传,更是促进可再生能源技术应用最有效的途径。

1、风光互补路灯系统的说明:

  太阳能是地球上一切能源的来源,风能是太阳能在地球表面的另外一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。

因此,太阳能与风能在时间上和地域上都有很强的互补性。

白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。

在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。

风能和太阳能在时间和季节上如此吻合的互补性,决定了风光互补结合后路灯系统可靠性更高、更具有实用价值。

因此,风光互补系统是综合利用风能、光能解决路灯供电困难的最佳方式。

风力发电机以自然风作为动力,风轮吸收风的能量,驱动风轮及风力发电机旋转,将风能转换为电能,通过控制设备储存进蓄电池组,蓄电池组储存的电能可以通过控制器直接供直流用电器使用,或通过逆变器转换成220V/50Hz(110V/60Hz)380V/50Hz交流电,供交流用电器使用。

风力发电机组采用永磁直驱发电机,由风力发电机主机、叶片、轮毂、主轴、导流罩、尾舵板组成,

整机结构简单,重量轻,低速发电性能良好,可靠性高,安装维护方便易搬迁等特性。

应用于路灯系统的风力发电机组通常功率为300W-500W。

  太阳能电池组件是将太阳光能直接转换为电能的发电装置,主要是晶体电池片、高透光率的钢化玻璃、高质量的胶膜、背膜、阳极电镀过的优质铝合金边框和防水绝缘接线盒组成,具有效率高、寿命长、抗风雨冰雹、以及安装方便等特性。

应用于路灯系统的太阳能电池组件通常使用功率为60W-120W。

  在风力发电机组基础上配备太阳能电池组件,控制器/逆变器,蓄电池组,灯具灯源,灯杆,电控箱可组成风力+太阳能互补路灯系统,又称为风光互补路灯系统。

2、风光互补路灯在节约资源和环保等方面的社会效益:

   燃烧化石燃料给环境造成的危害是当今世界性的严重问题,其结果是使生态环境遭到破坏,人畜生活受到危害。

特别是直接燃烧煤炭所造成的环境危害更是触目惊心。

化石燃料在燃烧过程中都要放出二氧化硫、一氧化碳、烟尘、放射性飘尘、氮氧化物、二氧化碳等。

这些物质会直接危害人畜,导致机体癌变,使生物受辐射损伤,产生酸雨,形成温室效应。

发达国家在工业化初期,由于大量燃烧煤炭而付出了沉痛的代价。

酿成灾难的典型例子是:

20世纪五六十年代,英国伦敦由于大量燃用煤炭等化石燃料,有雾都之称。

在1952年一次烟雾事件中,死亡人数达4000人,1962年一次死亡人数达750人。

中国国家发改委提供的数据是火电厂平均每千瓦时供电煤耗由2000年的392g标准煤降到360g标准煤,2020年达到320g标准煤。

即一吨标准煤可以发三千千瓦时(3000度)的电。

工业锅炉每燃烧一吨标准煤,就产生二氧化碳2620公斤,二氧化硫8.5公斤,氮氧化物7.4公斤.因此燃煤锅炉排放废气成为大气的主要污染源之一;

3、人们对应用风光互补路灯所担心的问题:

 3.1安全性问题担心路灯的风车和太阳能电池板会被风吹落到公路上伤及车辆和行人。

实际上,风光互补路灯的风车和太阳能电池板的受风面积远小于公路指示牌和灯杆广告牌,而且,路灯的强度设计也是按抗12级台风的标准设计的,不会出现安全上的问题。

3.2亮灯时间不保证担心路灯受天气影响,亮灯时间不保证。

风能和太阳能是最常有的自然能源,晴天阳光充足,而阴雨天则风大,夏天阳光照射强度高,而冬天风大,并且,根据气象资料,通过专业的计算,进行最合理的配置,能使风光互补路灯系统配有足够的储能系统,能保证路灯有充足的电源。

3.3造价高人们普遍认为风光互补路灯系统造价高。

实际上,随着科技进步,节能型照明产品的普及,风力发电机和太阳能产品的技术水平和生产批量的提高,使得成本下降,风光互补路灯系统的造价已接近同规格常规路灯造价的平均水平。

但由于风光互补路灯系统不消耗电能,所以,其运行成本远低于常规路灯。

 

第二章技术配置介绍

4、系统配置及原理:

4.2.1风光互补路灯24V直流系统原理图方框图

图1:

方式1:

风力机和太阳能电池组件通过智能控制器给蓄电池充电,然后由智能控制器智能控制24V直流

路灯开启、关闭。

4.2.2风光互补路灯220V交流系统原理图方框图

图2

 

方式2:

风力机和太阳能电池组件通过控制逆变器给蓄电池充电,然后由路灯控制器控制220V交流路灯开启、关闭。

图3

方式3:

当风力机和太阳能电池组件正常充电,蓄电池电压达到正常时,市电220V交流电是不接通的;当风力机和太阳能电池组件不工作或达不到给蓄电池充电所需的正常工作值电压时,这时由控制/逆变器判断,市电通过自动转换给路灯控制器,由市电为路灯提供电力。

(该方案可提供给原有路灯改造或重要道路的使用)

5、对环境和资源的要求:

5.1风光互补路灯系统推荐使用资源条件当地年平均风速大于3.5m/s,同时年度太阳能辐射总量不小于500MJ/m2是风光互补路灯系统推荐使用地区。

5.2风光互补路灯系统在下列条件下应能连续、可靠地工作:

a)室外温度:

-25℃~+45℃;

b)室内温度:

0℃~+40℃;

c)空气相对湿度:

不大于90%(25℃±5℃);

d)海拔高度不超过1000m。

5.3风光互补路灯系统在以下环境中运行时,应由生产厂家和用户共同商定技术要求和使用条件:

a)室外温度范围超出-25℃~+45℃的地区;

b)室内温度范围超出0℃~+40℃的用户;

c)海拔高度超过1000m的地区;

d)盐雾或沙尘严重地区。

6、风光互补路灯系统设计原则及组成

6.1风光互补路灯系统的组成:

图4

 

   风光互补路灯系统主要由风力发电机组,太阳能电池组件,智能控制器(或控制/逆变器),蓄电池组,灯具灯源,灯杆,电柜箱等组成。

6.2系统的设计要求:

合理的匹配计算是设计风光互补路灯系统的关键。

合理的匹配设计要求在当地风能、太阳能资源条件一定的前提下,采用容量尽可能合适的电力配置组合达到能保证道路照明不间断。

a)风力发电机+太阳能电池板+LED路灯组合;

b)风力发电机+LED路灯组合;

c)太阳能电池板+LED路灯+市电组合;

6.3系统的设计步骤

设计风光互补路灯系统的步骤如下:

1)汇集及测量当地风能资源、太阳能资源、其它天气及地理环境数据包括每月的风速、风向数据、年风频数据、每年最长的持续无风时数、每年最大的风速及发生的月份、韦布尔(weble)分布系数等;全年太阳日照时数、在水平表面上全年每平方米面积上接收的太阳辐射能、在具有一定倾斜角度的太阳光电池组件表面上每天太阳辐射峰值时数及太阳辐射能等;当地在地理上的纬度、经度、海拔高度、最长连续阴雨天数、年最高气温及发生的月份、年最低气温及发生的月份等。

  若是用户处无法获知非常详细的资源情况,则按照下表基本资料的填写,估算出一定范围内的发电量来进行相对合理的配置设计。

表3:

风光互补路灯系统用户调查表

用户名:

系统使用所在地:

负载功率

每天工作时间

直流/交流

最长无风阴雨天时间

是否接市电

要求无风阴雨天工作时间

电压

使用所在地是城市/乡村/山区

年平均风速

道路级别

平均日照时间

道路宽度

需求数量

安装完成日期/交货日期

灯杆高度

灯源要求(LED/LVD/低压钠灯)

特殊要求

联系人

联系方式

填表时间

邮件

2)根据用户负荷状况,选择灯杆,灯源,确定路灯的工作电压、额定功率、工作时数等。

  路灯设计是根据道路的具体照明要求来设计,道路宽度、周围环境、车辆通过流量等设计灯杆、组件、安装支架、灯挑臂,整体造型。

然后确定灯高、照度、灯距,确定灯源、灯罩。

3)确定风力发电机组及太阳能电池组件的总功率。

4)选择风力发电机组及太阳能电池组件的型号,确定及优化系统的结构。

5)确定系统内其它部件(蓄电池、控制器、控制/逆变器、辅助后备电源等)。

6)确定电控箱尺寸大小及位置。

7)工程整体布局等。

8)确定是否预留市电。

 

第三章设备基本参数

设备选型及说明:

7.、风力发电机组的主要特点及技术参数

7.1风力发电机组的选择:

a)由当地的年平均风速,最低月平均风速,无有效风速期时间的长短和年度总用电电量,月平均最低用电电量计算风力发电机组的功率;

b)由年内最低的月平均风速,选择风力发电机组额定风速值;

7.2风力发电机组主要特点及技术参数:

表4:

300W风力发电机组特性参数

型号

FD2.0-0.3/8

风轮直径(m)

2.0

叶片材料

木质玻璃钢涂覆

叶片数

3

调速方式

风轮侧偏

工作风速范围(m/s)

3~25

切入风速(m/s)

3

额定风速(m/s)

8

额定功率(w)

300

额定电压(v)

DC24

发电机形式

永磁三相交流

整机质量(kg)

35

备注

标准型

8、太阳能电池组件的主要特点及技术参数

8.1太阳能电池组件功率的选择太阳能电池组的峰值功率由系统日平均最低耗电电量、当地峰值日照小时数和系统损失因子来确定;在一般正常状态下,系统的太阳电池组件的最小功率应能保证提出供出系统日平均最低发电电量,并且是日平均最低耗电量的1.8倍以上。

8.2太阳能电池组件主要特点及技术参数

表5:

规格

标称功率(W)

峰值电压(V)

峰值电流(A)

尺寸(mm)

重量(kg)

 

TPM-165SM

180

35.25±0.5

5.11±0.2

 

1574*825*40

≈16

170

35.25±0.5

4.82±0.2

≈16

160

35.25±0.5

4.54±0.2

≈16

150

35.25±0.5

4.26±0.2

≈16

140

35.25±0.5

3.97±0.2

≈16

TPM-120SM

120

17.5±0.5

6.86±0.2

1454*648*40

≈10.7

110

17.5±0.5

6.29±0.2

≈10.7

100

17.5±0.5

5.71±0.2

≈10.7

TPM-80SM

80

17.5±0.5

4.57±0.2

1200*546*40

≈7.5

70

17.5±0.5

4.00±0.2

≈7.5

TPM-50SM

55

17.5±0.5

3.14±0.2

734*651*40

≈5.4

50

17.5±0.5

2.86±0.2

≈5.4

TSM-40M

40

17.5±0.5

2.28±0.2

635*535*40

≈3.8

TPM-20SM

30

17.5±0.5

1.71±0.2

594*343*28

≈2.1

20

17.5±0.5

1.14±0.2

≈2.1

TPM-10M

10

17.5±0.5

0.57±0.2

289*343*28

≈1.5

9智能控制器主要特点及技术参数

图5产品外观

 

9.1应用领域

◇太阳能LED路灯◇太阳能LED庭院灯

9.2基本参数

1.蓄电池输入电压:

12V/24V

2.光电池输入电压:

<55V

3.光电池输入功率:

≤170W/12V、≤340W/24V(10A控制器系列)

≤340W/12V、≤680W/24V(20A控制器系列)

4.负载输出电流:

30mA~2.7A

5.最大输出功率:

120W(10A系列);180W(20A系列)

6.待机静态功耗:

正常模式≤7mA,省电模式≤3.5mA

9.3主要特点

◆采用先进的Two-PhaseBoost电路,保证了其高效率和高可靠性。

◆12V系统时恒流效率高达96%,24V系统效率高达98%;

◆可四时段调光(即第一、二、三时段、天亮前开灯),调光时间自由设置;

◆可自由调光的功率范围:

10%-90%;

◆可同时兼容12V系统与24V系统;

◆延时开灯时间可调;

◆具有过充、过放、电子短路、过载保护、独特的防反接保护;

◆自主研制的散热器,散热性能优越,美观、实用。

详细参数:

表6

总额定充电电流

10A

20A

总额定负载电流

300MA-1.8A(可调)

300MA-2.7A(可调)

额定负载电压范围

蓄电池电压~55V(自动)

蓄电池电压~60V(自动)

LED恒流效率

≥92.8%(典型94.5%)24V系统可95.3%

系统电压

□12V;□24V/12VAUTO;

过载、短路保护

1.25倍额定电流60秒.1.5倍额定电流5秒时过载保护动作.≥3倍额定电流短路保护动作

空载损耗

正常模式≤7mA,省电模式≤3.5mA

充电回路压降

不大于0.26V

放电回路压降

不大于0.15V

超压保护

17V,×2/24V;

工作温度

工业级:

-35℃至+55℃(后缀I);

提升充电电压

14.6V;×2/24V;(维持时间:

55min)(仅当出现过放电时调用)

直充充电电压

14.1V;×2/24V;(维持时间:

55min)

浮充

13.6V;×2/24V;(维持时间:

直至降到充电返回电压动作)

充电返回电压

13.2v;×2/24V;

温度补偿

-4.5mv/℃/2V(提升、直充、浮充、充电返回电压补偿)

欠压电压

12.0V;×2/24V;

过放电压

11.1V-放电率补偿修正的初始过放电压(空载电压);×2/24V;

过放返回电压

12.6V;×2/24V;

控制方式

充电为PWM脉宽调制

9.4保护功能:

  1.采用进口三防漆,防水、防潮、防腐蚀。

  2.蓄电池反接保护:

蓄电池反接后系统不工作,不会烧坏控制器。

3.LED负载短路保护,LED负载短路后,控制器停止输出,不会损坏控制器;等短路解除后,控制器立即恢复输出。

4.LED开路保护,负载正常工作后,断开LED负载,控制器控制最高输出电压,保护控制器不受损坏,等LED负载再次接上时,控制器恢复输出。

  5.电池板反接保护:

电池板反接后不损坏系统。

  6.夜间防反充保护:

晚上防止蓄电池通过电池板放电。

7.TVS防雷保护。

9.5工作模式:

表7

数码管

对应功能

(十位)

对应参数表

(个位)

计算公式

(个位×)

十位

个位

00~18

全功率工作时间

全功率时间对应(0-18)个小时

×1h

2

0~9

第二时段工作时间

第二时段工作时间从(0-9)个小时

×1h

3

0~9

第三时段工作时间

第三时段工作时间从(0-9)个小时

×1h

4

1~9

LED并联数

对应从1-9并(每串300MA计算)

×300MA

5

0~9

第二时段功率比

对应全功率电流比的:

10%-90%

×10%

6

0~9

第三时段功率比

对应全功率电流比的:

10%-90%

×10%

7

0~9

开灯延时时间

响应从0-27分钟,每跳一位为3分钟

×3min

8

0~8

天亮前开灯时间

自动判断离天亮前几小时开灯

×0.5h

9.6LED负载连接:

控制器为12V/24V电压自动识别,连接LED负载时,请确认正确串联数目的LED灯,接线图如下:

图6

 

型号

串联数N

并联数K

太阳能板输入功率

负载输出功率

HCTS-L-10-12V

5≤N≤18

1≤K≤9

≤170W

≤120W

HCTS-L-10-24V

9≤N≤18

1≤K≤9

≤340W

≤120W

HCTS-L-20-12V

5≤N≤18

4≤K≤12

≤340W

≤180W

HCTS-L-20-24V

9≤N≤18

4≤K≤12

≤680W

≤180W

 

10、LED路灯灯头选型:

表8:

图示

尺寸

功率

LED

色温K

材质

光效

工作电压AC/V

防护

等级

产品尺寸:

690x331x125mm

净重;11.2Kg

包材尺寸:

810x450x210mm

56W

晶元

CREE

5500-6000K

AL+PC

>85LM/W

100-240

IP65

产品尺寸:

917x331x125mm

净重;15Kg

包材尺寸:

1026x450x210mm

120W

晶元

CREE

5500-6000K

AL+PC

>85LM/W

100-240

IP65

11、蓄电池配置说明:

11.1蓄电池的选择

a)应当优先选用储能用铅酸蓄电池和其他适合风光互补发电使用的新型蓄电池;

b)蓄电池组的串联电压必须与风力发电机组的输出电压相匹配,同时也必须与太阳能电池组件输出电压相一致;

c)蓄电池的容量是由日最低耗电量,设定的连续阴天的天数,最长无风期的天数和蓄电池的技术性能,如自放电率、充放电效率和放电深度等因素共同确定的。

 

11.2蓄电池的计算

   现以系统设计目标为40W/24V的负载举例说明计算。

假定负载满负荷工作的情况下,按每天使用8小时计算,要求蓄电池在满充后至少可以持续提供负载3天的电力,现有的蓄电池标称功率均以

Ah来计。

设:

x为负载功率值,y为蓄电池容量值,50%是VRLA的最佳放电深度,0.85是回路损耗率:

xW×8h×3d=24V×(yAh×50%)×0.85x/y=12×0.85/24

根据系统是默认40W/24V的负载,y=94,选用2块12V/100Ah蓄电池串联即足够满足要求。

12、灯杆配置及说明

灯杆配置主要是指灯杆的强度及高度设计,以及灯杆上太阳能电池组件,灯源的安装高度的确定。

我公司灯杆的强度设计符合《城市道路照明工程施工及验收规范》、《小型风力发电机技术条件》里对灯杆,风力机组塔管的要求,并且与风力机组的自振频率相差很大,可以抗12级台风。

灯杆的高度应根据安装地点的地理环境来决定,保证风力机组的使用不受影响。

太阳能电池组件的安装一般以不与风力机组的风叶相干涉为准,同时要注意保证太阳能电池组件不被灯杆遮挡。

灯源的安装高度根据设计要求的照度确定。

13、控制/逆变器主要特点及技术参数

1)控制/逆变器主要特点:

  SN-500型控制/逆变器风光互补输入,经过整流给蓄电池充电,输出波形为改善方波。

适合于无电地区家庭用电,可带如冰柜120L以下、白炽灯泡、节能灯、电视、卫星电视天线接收机、音响、风扇、及电热毯等。

具有短路保护、过载保护、欠压保护、过压保护、防反接保护、过载热保护。

2)控制/逆变器技术参数:

表9

序号

技术指标

逆变器SN500

1

输入电压(直流)

24V

2

输出电压(交流)

220V±5%

3

输出波型

改善方波

4

频率

50HZ±5%

5

最大输出功率

300W

6

效率

≥80%

7

噪声

≤65dB(A)

 

8

静态电流

不大于额定电流的3%

9

带载能力

输入电压与输出功率为额定值,环境温度为25℃时,逆变器连续可靠工作。

10

输入电压为额定值,输出功率为额定值的125%时,逆变器安全工作时间应不低于1min。

11

输入电压为额定值,输出功率为额定值的200%时,逆变器安全工作时间应不低于5秒。

12

欠压保护

输入电压低于90%标称值10.8V时,应能自动关机及保护蓄电池。

13

过压泄荷

输入电压高于28.2V时,开始泄荷,保护蓄电池,多余的电能旁路。

14

过压保护

输入电压高于29.8V时,逆变器自动关机。

15

过电流保护

工作电流超过额定值50%达10秒以上时,应能自动保护。

16

短路保护

逆变器输出短路时,逆变器自动关机。

17

极性反接保护

输入直流极性接反时应能自动保护。

18

防雷电保护

逆变器设备应具有一定的防雷电保护功能

19

输入端抗高电压

冲击能力

输入电压≤100V不损坏

20

输出端抗外电压

冲击能力

与交流220V电源并联不损坏

 

注:

1.行业标准JB/T7143.1-93。

2.序列号14、15、16是企业标准增加项目,行业标准无具体要求。

3.企业标准中效率高于行业标准5%。

 

第四章风光互补路灯系统优点及技术优势

14、风光互补路灯系统的优点:

14..1经济效益好由于路灯必须用埋地电缆供电,所以在离电源点超过三公里的公路,路灯的供电线路的建设成本很高,随着公里的延伸,还需要设升压系统,所以,在远郊的公路,路灯的供电线路成本高,线路上消耗的电能也多。

而风光互补路灯系统利用自然风力和光源,不需要输电线路,不消耗电能,无需架线,无需专人控制和管理,产品使用寿命长达20年,安装成本低,维修方便,有明显的经济效益。

14.2可作为普及新能源知识的好教材目前,非常需要对民众进行环保和新能源知识的普及教育,风光互补路灯系统符合绿色环保要求,无污染、无辐射,保护生态环境,能最直接的向从们展示风能和太阳能这

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1