六下数学导学案修改.docx

上传人:b****5 文档编号:8164615 上传时间:2023-01-29 格式:DOCX 页数:15 大小:21.64KB
下载 相关 举报
六下数学导学案修改.docx_第1页
第1页 / 共15页
六下数学导学案修改.docx_第2页
第2页 / 共15页
六下数学导学案修改.docx_第3页
第3页 / 共15页
六下数学导学案修改.docx_第4页
第4页 / 共15页
六下数学导学案修改.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

六下数学导学案修改.docx

《六下数学导学案修改.docx》由会员分享,可在线阅读,更多相关《六下数学导学案修改.docx(15页珍藏版)》请在冰豆网上搜索。

六下数学导学案修改.docx

六下数学导学案修改

六下数学导学案(修改)

【使用说明及学法指导】

1、结合问题导学自学书中1-2页,用红笔勾画出疑惑点;独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2、知道正数和负数的读法和写法,知道0既不是正数,又不是负数。

正数都大于0,负数都小于0。

3、体验数学和生活的密切联系,激发学习数学的兴趣,培养应用数学的能力。

【重点、难点】

重点:

初步认识正数和负数以及读法和写法。

难点:

理解0既不是正数,也不是负数。

【预习导学】

(一)轻松热身。

1、说出意思相反的话。

①向前走200米()②电梯上升15层()③我在银行存入了500元()。

④零上10摄式度()。

(二)自主学习。

1、自学例1:

(1)认识温度计,理解用正负数来表示零上和零下的温度。

①“。

”表示度,“C”表示摄氏度。

在标准大气压下,冰和水混合时的温度是0摄氏度,水沸腾时的温度是100摄氏度,0摄氏度是零上温度和零下温度的分界点。

②零上和零下是一对反义词,零上温度用“+”表示,“+”是正号,读作“正”。

零下温度用“”是负号,读作负。

③教室内的温度零上16℃,比0摄氏度的温度还要(),记作(),读作()。

雪地里的温度是零下16℃,比0摄氏度的温度还要(),记作(),读作()。

+16℃与500”表示(),读作()。

3、认识负数。

(1)像500、0、4、、、这样的数叫做();像

16、2000、500、、6、3这样的数叫做()。

(2)0、4读作(),+读作()。

4、正数前面的“+”号()省略(填能或不能),负数前面的“1,

2、5,中,()是正数,()是负数,()既不是正数,也不是负数。

(2)如果60m表示向南走60m,那么20kg表示卖出20kg大米。

C、收入500元记作+500元,则支出200元记作8

5、6+0、982正数:

()

负数:

()

3、如果+20%表示增加20%,那么

1、5。

如果想从起点到2处到2处,应如何运动?

在图中表示出来。

2、自学例4。

(1)把这一周每天的最低气温填在表中。

时间周一周二周三周四周五周六周日最低气温

(2)把每天的最低气温在数轴上表示出来。

在数轴上,从左到右的顺序就是数从()到()的顺序。

(3)比较大小。

2和016

【合作交流】

1、讨论自主学习中存在的问题。

2、讨论:

怎样比较负数的大小?

*

3、把例4中这一周每天最低气温从小到大排列出来。

()<()<()<()<()<()<()

4、得出结论:

所有的负数都在0的(),也就是负数都比0(),而正数都比0(),负数都比正数()。

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、写出

A、

B、

C、

D、E、F点表示的数。

2、在数轴上表示下列各数,并比较各组数的大小。

-7○-5

1、5○0○-

1、5-

3、5○

3、5*

3、一个点从数轴上某点出发,先向右移动5个单位长度,再向左移动2个长度单位,这时这个点表示的数为1,则起点表示的数是多少?

课题:

圆柱的认识

【使用说明及学法指导】

1、结合问题导学自学书中10-12页,用红笔勾画出疑惑点;独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、通过初步认识圆柱,感受到数学与生活的密切联系。

2、通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。

3、通过由面旋转成体的过程,认识圆柱,了解圆柱的基本特征,知道圆柱的各部分名称。

【重点、难点】

重点:

1、联系生活,在生活中辨认圆柱形的物体,并能抽象出几何图形的形状来。

2、通过观察,初步了解圆柱的组成及其特点。

难点:

理解圆柱的侧面展开图与圆柱各部分的关系。

【预习导学】

(一)轻松热身。

1、我们以前学过的平面图形有哪些?

,学过的立体图形有哪些?

、2、观察书中第10页上的物体,这类物体的名称叫()、3、举例:

生活中有哪些圆柱形的物体?

(二)自主学习。

1、自学例1。

(1)拿出准备好的圆柱形实物,摸一摸,圆柱是由()、()、()组成。

圆柱的两个圆面叫做(),周围的面叫做(),两个底面之间的距离叫做()。

(2)在圆柱形实物上找出圆柱的底面、侧面和高。

(3)指出下面圆柱的底面、侧面和高。

(4)认识圆柱的特征。

①圆柱的底面都是(),并且大小(),圆柱的侧面是()。

②圆柱有()条高,这些高的长度()。

2、实际操作:

把一张长方形的硬纸贴在木棒上,快速转动,转出来是一个()。

【合作交流】

1、讨论自主学习中存在的问题。

2、合作交流完成例2。

(1)组内操作:

在圆柱形罐头盒侧面的商标纸上画一条高,沿着这条高把商标纸剪开后展开,是()形。

(2)长方形的长等于圆柱(),宽等于圆柱的()。

*

3、当圆柱的底面周长和高相等时,沿高剪开的圆柱侧面展开后是()形。

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、选择。

(1)下面物体的形状,不是圆柱体的是()①日光灯管②汽油桶③粉笔

(2)把圆柱的侧面展开不能得到()①长方形②正方形③平行四边形 ④梯形

2、填空。

(1)把一个底面半径是2cm的圆柱的侧面展开,得到一个正方形,这个圆柱的高是()cm、

(2)圆柱有()条高。

3、下面图形中是圆柱的在括号里打“√”,并标出底面直径和高。

*

4、一个圆柱的侧面沿高展开是一个长

12、56cm,宽

6、28cm的长方形,求这个圆柱的底面半径。

课题:

圆柱的表面积

【使用说明及学法指导】

1、结合问题导学自学书中13-14页,用红笔勾画出疑惑点;独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、根据圆柱的表面积与侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

3、在数学学习活动中获得成功的体验,建立自信心。

【重点、难点】

重点:

掌握圆柱的侧面积和表面积的计算方法。

难点:

运用侧面积、表面积的知识解决实际问题。

【预习导学】

(一)轻松热身。

1、写出相关的公式:

圆的周长公式:

c=长方形的面积:

s=圆的面积:

s=

2、圆柱的侧面展开是()形,长方形的长等于圆柱的(),宽等于圆柱的()。

(二)自主学习。

1、圆柱侧面积公式的推导。

(1)圆柱的侧面积=()的面积=()x()=()x()用字母表示圆柱的侧面积公式:

s=

2、圆柱侧面积公式的应用。

(只列式,不计算)

(1)一个圆柱,底面周长是

2、5dm,高0、6dm,侧面积是多少?

(2)一个圆柱,底面直径是8cm,高12cm,侧面积是多少?

(3)一个圆柱,底面半径是2dm,高dm,侧面积是多少?

3、思考:

要求一个圆柱的侧面积,通常需要知道哪些条件?

【合作交流】

1、理解圆柱表面积的含义(1小组内拿出做好的圆柱,标出每个面,把它展开,观察,圆柱的表面由()、()组成。

(2)讨论:

怎样计算圆柱的表面积?

圆柱的表面积=()+()

2、求下面圆柱的表面积。

一个圆柱的高是10cm,底面半径是3cm,它的表面积是多少?

①侧面积:

②底面积:

③表面积:

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、用一张长

4、5分米,宽2分米的长方形纸,围成一个圆柱形纸筒,它的侧面积是多少?

2、一个圆柱的底面周长是

6、28cm,高是5cm,它的表面积是多少?

课题:

运用圆柱表面积解决实际问题

【使用说明及学法指导】

1、结合问题导学自学书中14页,用红笔勾画出疑惑点,独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、熟练掌握圆柱侧面积和表面积的计算方法,并能解决有关的实际问题。

2、培养良好的空间观念和解决有关实际问题的能力。

3、在数学学习活动中获得成功的体验,建立自信心。

【重点、难点】

重点:

灵活运用圆柱侧面积、表面积的计算方法解决实际问题。

难点:

正确解决与圆柱侧面积、表面积计算相关的一些简单的实际问题。

【预习导学】

(一)轻松热身。

1、圆柱的表面积=

2、一个圆柱高20厘米,底面直径是12厘米,求圆柱的表面积。

(二)自主学习。

1、自学例4。

(1)求做这样一顶帽子需要多少面料,实际上就是求圆柱形帽子的()。

(2)这个帽子的表面积算的是那几个面?

()为什么?

(3)计算:

①帽子的侧面积:

②帽顶的面积:

③需要用的面料:

温馨提示:

最后的结果不能用“四舍五入”法,应该用“进一法”,因为在实际生活中,使用的材料都比计算得到的结果多一些。

【合作交流】

1、讨论自主学习中存在的问题。

2、一种圆柱形流水管,每节长度为

1、2cm,横截面直径为0、5cm,制作20节这样的流水管,至少需要铁皮多少平方米?

(得数保留整数)

(1)求所需要的铁皮面积,实际上就是求流水管的()面积。

(2)计算:

3、讨论:

求下列圆柱形物体的表面积时应计算哪几个面的面积?

(1)通风管,水管,粉刷圆柱,装饰花柱等。

()

(2)无盖水桶,灯笼,博士帽,圆柱形水池等。

()(3)油桶,有盖的水桶、实物罐等。

()

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、一个圆柱形蓄水池,直径是10米,深2米。

这个蓄水池的占地面积是多少?

在水池的底面和内壁抹上水泥,抹水泥的面积是多少?

*

2、用一张长

2、5米,宽2米的铁皮做一个圆柱形通风管,这个通风管的侧面积是多少?

(接口处忽略不计)

(附加题)

4、一根圆柱形木头长4m,底面半径是10cm,把它截成3段后,表面积增加了多少平方厘米?

课题:

圆柱的体积

【使用说明及学法指导】

1、结合问题导学自学书中19页,用红笔勾画出疑惑点,独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2、通过圆柱体体积公式的推导,培养学生的分析推理能力。

3、理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积

【重点、难点】

重点:

圆柱体体积的计算难点:

圆柱体体积公式的推导

【预习导学】

(一)轻松热身。

1、物体所占空间的大小叫做物体的()、2、长方体的体积=v=正方体的体积=v=长方体和正方体的体积=v=

3、回顾圆面积公式的推导。

(二)自主学习。

1、自学例

5、

(1)操作:

把圆柱转化成长方体。

把圆柱的底面分成16个相等的扇形,按照等分线并沿着圆柱的高把圆柱切开,然后拼成学过的立体图形,如下图所示:

(2)把圆柱16等分,能拼成一个近似的()。

(3)观察比较上面两个图形之间的关系:

图形形状不同,但()相等圆柱的高=长方体的高圆柱的()=长方体的长圆柱的()=长方体的宽(4)推导圆柱体积公式:

因为长方体的体积=长x宽x高=()x高所以圆柱的体积=()x高用字母表示圆柱的体积公式:

v=或v=

【合作交流】

1、讨论自主学习中存在的问题。

2、探讨:

圆柱的各部分与拼成的长方体的各部分之间的关系。

3、一个圆柱形罐头盒的底面半径是5cm,高是18cm。

它的体积是多少?

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、判断。

(1)圆柱的体积比表面积大。

()

(2)侧面积相等得两个圆柱,它们的体积一定相等。

()(3)等底等高的正方体、长方体和圆柱的体积都相等。

()(4)圆柱的高不变,底面直径扩大到原来的4倍,体积也扩大到原来的4倍。

()

2、一个圆柱的底面直径是80dm,高15dm,求这个长方体的体积。

*

3、把一个圆柱的侧面展开后得到一个正方形,已知圆柱的高是

12、56dm,求圆柱的体积。

课题:

圆柱的体积(容积)公式的应用

【使用说明及学法指导】

1、结合问题导学自学书中20页,用红笔勾画出疑惑点,独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、熟练掌握圆柱的体积公式,能正确计算圆柱的体积和圆柱形容器的容积。

2、体验解决问题策略的多样化,不断激发学习数学的好奇心和求知欲。

3、培养分析问题、解决问题及实践应用能力。

【重点、难点】

重点:

熟练掌握圆柱的体积公式,能正确计算圆柱的体积和圆柱形容器的容积。

难点:

根据实际情况灵活运算圆柱体积公式解决问题。

【预习导学】

(一)轻松热身。

1、体积单位有:

容积单位有:

2、填空。

0、125升=()毫升=()立方厘米=()立方分米8000ml=()立方厘米

3、圆柱的体积公式:

4、求下面圆柱的体积。

(1)底面积是40平方米,高是2m。

(2)底面半径是2cm,高是1dm。

(二)自主学习。

1、学懂书中的例6,然后完成下面的题。

一个杯子,从里面量,底面直径是6cm,高是8cm。

现在有一袋牛奶重220ml,问:

这个杯子能不能装下这袋牛奶?

(1)理解题意:

要解决问题,先要计算出杯子的容积。

容积就是容器内部空间的体积,容积的计算方法与体积的计算方法相同。

(2)列式解答:

①杯子的底面积:

②杯子的容积:

比较:

()>(),这个杯子()(填能或不能)装下这袋牛奶。

答:

【合作交流】

1、讨论自主学习中存在的问题。

2、说说体积和容积的关系。

3、一个圆柱形油桶,从里面量得桶底半径是2dm,深5dm。

如果每升油重0、78kg,这个油桶可装多少千克油?

(得数保留整数)想一想:

最后的结果能用“四舍五入”法吗?

为什么?

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、一个圆柱形的体积是90平方米,底面积是15平方米,它的高是多少m?

2、一个圆柱形粮囤,从里面量得它的底面周长是

6、28m,高是2m。

如果每立方米小麦重700kg,那么这个粮囤能装小麦多少千克?

*

3、一个圆柱形水杯,底面内直径是10cm,高是16cm,倒入的饮料占容积的80%,倒入饮料多少ml?

课题:

圆锥的认识

【使用说明及学法指导】

1、结合问题导学自学书中10-12页,用红笔勾画出疑惑点;独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、通过初步认识圆锥,知道圆锥各部分的名称,掌握圆锥的特征。

2、了解圆锥的高的测量方法。

3、培养观察,概括和动手操作的能力。

【重点、难点】

重点:

掌握圆锥的特征。

难点:

自己动手做圆锥模型。

【预习导学】

(一)轻松热身。

1、自己制作一个圆锥模型。

2、观察书中第23页上的物体,这类物体的名称叫()、3、举例:

生活中有哪些圆锥形的物体?

(二)自主学习。

1、自学例1。

(1)拿出准备好的圆锥形实物,摸一摸,圆锥是由()和()组成。

圆锥的底面是一个(),侧面是一个()。

(2)从圆锥的()到底面()的距离是圆锥的高。

(3)圆锥有()条高。

2、实际操作:

把一张直角三角形的硬纸贴在木棒上,快速转动,转出来是一个(),直角三角形贴在木棒上的直角边是旋转而成的圆锥的(),另一条直角边是圆锥的底面的()。

【合作交流】

1、讨论自主学习中存在的问题。

2、合作交流完成。

组内操作:

用硬纸做一个圆锥,量出它的底面直径和高。

怎样测量圆锥的高呢?

3、比较圆柱和圆锥的不同?

圆柱圆锥侧面底面高

4、圆锥的侧面展开后是一个()形。

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、选择。

(1)下面物体的形状,是圆锥体的是()①沙堆②汽油桶③粉笔

(2)把圆锥的展开能得到()①长方形②正方形③平行四边形 ④扇形

2、判断。

(1)圆锥的高是指从圆锥的顶点到圆锥的底面的任意一条线段的长。

()

(2)圆锥有无数条高。

()(3)半圆不能围成圆锥。

()

3、下面哪些是圆锥,打上“√”,并标出底面直径和高。

*

4、有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口3厘米。

若将一个圆锥铅锤浸入杯中,水会溢出20毫升。

求铅锤的体积。

课题:

圆锥的体积

【使用说明及学法指导】

1、结合问题导学自学书中25-26页,用红笔勾画出疑惑点;独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、探索并掌握圆锥的体积计算公式。

2、能利用公式计算圆锥的体积,解决简单的实际问题。

3、培养乐于学习,勇于探索的情趣。

【重点、难点】

重点:

掌握圆锥的体积计算公式。

难点:

理解圆锥体积公式的推导过程。

【预习导学】

(一)轻松热身。

1、写出相关的公式:

圆的体积:

s=圆柱的体积公式:

V=

2、一个圆柱形的底面直径是10米,高

3、9米,它的体积是多少?

(二)自主学习。

1、圆锥体积公式的推导。

(1)借助教具完成书上25-26页的实验,探索圆锥和圆柱体积之间的关系。

(2)通过实验,因为:

圆柱的体积=()(),与圆柱等底等高的圆锥的体积等于圆柱体积的(),所以圆锥的体积=()()()用字母表示体积公式:

V圆柱=()()V圆锥=()()

2、圆锥体积公式的应用。

看书完成例3工地上有一些沙子,堆起来近似一个圆锥,这堆沙子大约多少立方米?

(得数保留两位小数。

(1)沙堆底面积:

(2)沙堆的体积:

【合作交流】

1、讨论自主学习中存在的问题。

2、思考讨论:

为什么等底等高的圆锥的体积只有圆柱的体积的?

等底等高的圆柱的体积比圆锥的体积多()倍,圆锥的体积比圆柱的体积少()。

3、一个圆锥形小麦堆,底面周长是

25、12m,高3m、如果每立方米小麦重750千克,这堆小麦重多少千克?

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、一个圆锥的高是10cm,底面半径是3cm,它的体积是多少?

2、把一个底面直径为20cm的圆柱形木块切削成一个与它等底等高的圆锥。

这个圆锥的体积是多少?

3、一个正方体的体积是225立方厘米,一个圆锥的底面半径和高都等于该正方体的棱长。

求这个圆锥的体积。

课题:

整理和复习(圆柱和圆锥)

【使用说明及学法指导】

1、结合问题导学自学书中29-30页,用红笔勾画出疑惑点;独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【复习目标】

1、掌握圆柱和圆锥的特征,掌握圆柱表面积和体积计算公式,圆锥体积计算公式。

2、能够应用圆柱表面积和体积计算公式和圆锥体积计算公式,解决简单的实际问题。

【重点、难点】

重点:

掌握圆柱表面积和体积计算公式和圆锥的体积计算公式。

难点:

能够应用圆柱表面积和体积计算公式和圆锥体积计算公式,解决简单的实际问题。

【预习导学】

(一)轻松热身。

1、写出相关的公式:

圆柱的表面积:

s=圆柱的体积公式:

V圆柱=圆锥的体积公式:

V圆锥=

2、说说圆柱和圆锥的特征。

(二)自主学习。

1、填空。

(1)一个圆柱的底面半径是4分米,高是7分米,它的侧面积是(),表面积是(),体积是()。

(2)一个圆柱的侧面积是

18、84平方米,高是3分米,它的底面积是()。

(3)一个圆柱与一个圆锥等底等高,圆锥的体积是

9、6立方厘米,该圆柱的体积比圆锥的体积多()(4)一个圆柱,底面半径为r,侧面展开是一个正方形,那么这个圆柱的高是()。

(5)一个圆锥的高是5分米,底面半径是3分米,它的体积是()。

※(6)把一个棱长6厘米的正方体削成尽可能大的圆柱形,则这个圆柱的体积是()立方厘米。

2、判断。

(1)圆锥的体积比圆柱的体积小。

()

(2)大圆半径是小圆半径的3倍,那么大圆直径是小圆直径的6倍。

()(3)一个圆柱的侧面积展开后是一个正方形,圆柱的高于底面周长的比是1:

1。

()

【合作交流】

1、讨论自主学习中存在的问题。

2、有一个粮囤下部分是圆柱形,它的的底面半径是3米,高是

1、8米,上部分是圆锥形,它的高是0、9,这个粮囤可以装多少立方米的稻谷?

【课堂总结】

本堂课你学懂了什么?

还有什么疑问?

【当堂检测】

1、用铁片制作12节圆柱通风管,每节通风管的底面直径是8分米,长是60分米。

至少需要多少平方米铁皮?

(得数保留整平方米)

2、一个圆柱形油桶,底面半径是4分米,高是5分米,做这样一个油桶需要多少铁皮?

这个圆柱形油桶可以装汽油多少升?

3、把一根底面周长是24厘米,长是18厘米的圆柱形钢材加工成与它等底等体积的圆锥形钢材,圆锥的高是多少?

4、一个圆柱形沙堆,底面周长是

12、56m,高是

1、8m,用这堆沙在8m宽的公路上铺3cm厚的路面,能铺多少米?

课题:

比例的意义

【使用说明及学法指导】

1、结合问题导学自学书中32-33页,用红笔勾画出疑惑点;独立思考完成合作探究。

2、针对预习自学及合作探究找出的疑惑点,课上小组内讨论交流,答疑解惑。

3、有*标记的绿叶同学可以不做,附加题由金叶同学完成。

【学习目标】

1、理解比例的意义。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养分析、概括能力和勇于探索的精神。

【重点、难点】

重点:

理解比例的意义。

难点:

能正确判断两个比能否组成比例。

【预习导学】

(一)轻松热身。

1、说说什么是比。

2、回忆比各部分的名称。

3:

2或……()

()()()

3、回忆比的基本性质:

比的前项和后项同时乘或除以()的数,()除外,比值不变。

4、将比值相等的比用线连起来。

10:

12

2、5:

30:

91:

125:

62:

2

75、求比值:

0、9:

3、6:

9:

27

(二)自主学习。

1、自学教科书32-33的内容。

求出学校两面国旗长和宽的比值。

操场上国旗的比值:

2、4:

1、6=教室里国旗的比值:

60:

40=根据所求出的比值,可以发现这两个比的比值()。

所以我们可以将这两个比用“=”连接,写成一个等式,即

2、4:

1、6=():

40或=像这样表示两个比相等的式子就叫做()。

2、下面哪组中的两个比可以组成比例,把组成的比例写出来。

:

和8:

616:

4和72:

18

【合作交流】

1、讨论自主学习中存在的问题。

2、讨论:

书上32页四面国旗长和宽的比值有什么关系?

并写出两组以上的比例。

3

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学反思汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1