二重积分学习总结.docx

上传人:b****6 文档编号:7921824 上传时间:2023-01-27 格式:DOCX 页数:8 大小:46.01KB
下载 相关 举报
二重积分学习总结.docx_第1页
第1页 / 共8页
二重积分学习总结.docx_第2页
第2页 / 共8页
二重积分学习总结.docx_第3页
第3页 / 共8页
二重积分学习总结.docx_第4页
第4页 / 共8页
二重积分学习总结.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

二重积分学习总结.docx

《二重积分学习总结.docx》由会员分享,可在线阅读,更多相关《二重积分学习总结.docx(8页珍藏版)》请在冰豆网上搜索。

二重积分学习总结.docx

二重积分学习总结

高等数学论文

二重积分学习总结》

姓名:

徐琛豪

班级:

安全工程02班

学号:

1201050221

完成时间:

2013年6月2日

二重积分

【本章学习目标】

⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。

⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。

熟练掌握直角坐标系和极坐标系下重积分的计算方法。

⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。

1二重积分的概念与性质

1.二重积分定义

为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。

从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D成n个小区域1,2,L,n的分法要任意,二是在每个小区域i上的点(i,i)i的取法也要任意。

有了这两个“任意”,

如果所对应的积分和当各小区域的直径中的最大值0时总有同一个极限,才能称二元函数f(x,y)在区域D上的二重积分存在。

2.明确二重积分的几何意义。

(1)若在D上f(x,y)≥0,则f(x,y)d表示以区域D为底,以

D

f(x,y)为曲顶的曲顶柱体的体积。

特别地,当f(x,y)=1时,f(x,y)d

D表示平面区域D的面积。

(2)若在D上f(x,y)≤0,则上述曲顶柱体在Oxy面的下方,二重积分f(x,y)d的值是负的,其绝对值为该曲顶柱体的体积

D

(3)若f(x,y)在D的某些子区域上为正的,在D的另一些子区域上为负的,则f(x,y)d表示在这些子区域上曲顶柱体体积的代数和(即D

在Oxy平面之上的曲顶柱体体积减去Oxy平面之下的曲顶柱体的体积).

3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。

有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数f(x,y)在闭区域D上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。

【主要概念梳理】

1.二重积分的定义设二元函数f(x,y)在闭区域D上有定义且有界.

分割用任意两组曲线分割D成n个小区域1,2,L,n,同时用i表示它们的面积,i1,2,L,n.其中任意两小块i和j(ij)

除边界外无公共点。

i既表示第i小块,又表示第i小块的面积.

n

近似、求和对任意点(i,i)i,作和式f(i,i)i.

i1

取极限若i为i的直径,记max{1,2,L,n},若极限

lim0f(i,i)i0i1

存在,且它不依赖于区域D的分法,也不依赖于点(i,i)的取法,称此极限为f(x,y)在D上的二重积分.记为

n

f(x,y)dlim0f(i,i).

D0i1

称f(x,y)为被积函数,D为积分区域,x、y为积分变元,d为面积微元(或面积元素).

2.二重积分f(x,y)d的几何意义

D

(1)若在D上f(x,y)≥0,则f(x,y)d表示以区域D为底,以f(x,y)D

为曲顶的曲顶柱体的体积.

(2)若在D上f(x,y)≤0,则上述曲顶柱体在Oxy面的下方,二重积分f(x,y)d的值是负的,其绝对值为该曲顶柱体的体积

D

(3)若f(x,y)在D的某些子区域上为正的,在D的另一些子区域上为负的,则f(x,y)d表示在这些子区域上曲顶柱体体积的代数和(即D

在Oxy平面之上的曲顶柱体体积减去Oxy平面之下的曲顶柱体的体积).

3.二重积分的存在定理

3.1若f(x,y)在有界闭区域D上连续,则f(x,y)在D上的二重积分必存在(即f(x,y)在D上必可积).

3.2若有界函数f(x,y)在有界闭区域D上除去有限个点或有限个光

滑曲线外都连续,则f(x,y)在D可积.

4.二重积分的性质

二重积分有与定积分类似的性质.假设下面各性质中所涉及的函数f(x,y),g(x,y)在区域D上都是可积的.

性质1有限个可积函数的代数和必定可积,且函数代数和的积分等于各函数积分的代数和,即

[f(x,y)g(x,y)]df(x,y)dg(x,y)d.

DDD

性质2被积函数中的常数因子可以提到积分号前面,即

kf(x,y)dkf(x,y)d(k为常数).

DD

性质3若D可以分为两个区域D1,D2,它们除边界外无公共点,则

f(x,y)df(x,y)df(x,y)d.

DD1D2

性质4若在积分区域D上有f(x,y)=1,且用S(D)表示区域D的面积,则

dS(D).

D

性质5若在D上处处有f(x,y)≤g(x,y),则有

f(x,y)dg(x,y)d.

DD

推论f(x,y)df(x,y)d.

DD

性质6(估值定理)若在D上处处有m≤f(x,y)≤M,且S(D)为区域

D的面积,则

mS(D)f(x,y)dMS(D).

D

性质7(二重积分中值定理)设f(x,y)在有界闭区域D上连续,则在D上存在一点(,),使

数学思想方法】

D

二重积分是一元函数定积分的推广与发展,它们都是某种形式的和的极限,即分割求和、取极限,故可用微元法的思想来理解二重积分的概念与性质。

2在直角坐标系中二重积分的计算

本章的重点是二重积分的计算问题,而直角坐标系中二重积分的计算问题关键是如何确定积分区域及确定X型区域还是Y型区域,这也是本章的难点。

直角坐标系中二重积分计算的基本技巧:

(1)在定积分计算中,如果D的形状不能简单地用类似1(x)y2(x)或1(y)x2(y)的形式来表示,则我们可以将Daxbcyd

分成若干块,并由积分性质

f(x,y)df(x,y)df(x,y)d.

DD1D2

对右端各式进行计算。

(2)交换积分次序不仅要考虑到区域D的形状,还要考虑被积函数的特点。

如果按照某一积分次序的积分比较困难,若交换积分次序后,由于累次积分的积分函数(一元积分)形式发生变化,可能会使新的积分次序下的积分容易计算,从而完成积分的求解。

但是无论是先对x积分,再对y积分,还是先对y积分,再对x积分最终计算的结果应该是相同的。

一般的处理方法是由积分限确定积分区域D,并按照新

的积分次序将二重积分化成二次积分。

具体步骤如下:

①确定D的边界曲线,画出D的草图;

2求出D边界曲线的交点坐标;

3将D的边界曲线表示为x或y的单值函数;

4考虑是否要将D分成几块;

5用x,y的不等式表示D.

注:

在积分次序选择时,应考虑以下几个方面的内容:

(ⅰ)保证各层积分的原函数能够求出;(ⅱ)若D为X型(Y型),先对x(y)积分;(ⅲ)若D既为X型又为Y型,且满足(ⅰ)时,要使对D的分块最少。

(3)利用对称性等公式简化计算

设f(x,y)在区域D上连续,则

1当区域D关于x轴对称

若f(x,y)f(x,y),则f(x,y)d=0;

D

若f(x,y)f(x,y),则f(x,y)d=2f(x,y)d,其中D1为D在DD1

x轴上方部分。

2当区域D关于y轴对称

若f(x,y)f(x,y),则f(x,y)d=0;

D

若f(x,y)f(x,y),则f(x,y)d=2f(x,y)d,其中D2为D在DD2

y轴右侧部分。

3当区域D关于x轴和y轴都对称

若f(x,y)f(x,y)或f(x,y)f(x,y),则f(x,y)d=0;

D

若f(x,y)f(x,y)f(x,y),则f(x,y)d=4f(x,y)d,其中D1为

DD1

D在第一象限部分

4轮换对称式

设D关于直线yx对称,则f(x,y)d=f(y,x)d

DD主要概念梳理】

直角坐标系中二重积分计算

当被积函数f(x,y)0且在D上连续时,

说明:

若积分区域既是X–型区域又是Y–型区域,则有

b2(x)d

Df(x,y)dxdyadx(x)f(x,y)dycdy

3在极坐标系中二重积分的计算

极坐标系中二重积分计算的基本技巧:

(1)一般地,如果积分区域是圆域、扇形域或圆环形域,且被积函数为f(x2y2),

f(y),f(x)等形式时,计算二重积分时,往往采用极坐标系来计算。

xy

【主要概念梳理】

利用极坐标系计算二重积分

在极坐标系下,用同心圆r=常数及射线?

=常数,分划区域D为k(k1,2,L,n)。

则f(x,y)df(rcos,rsin)rdrd

特别地

若D:

1(

)r

2(),

则有f(rcos

D

rsin

)rdrd

2()

df(rcos

1()

rsin

)rdr

若D:

0

r(

则有f(rcos

D

rsin

)rdrd

()

df(rcos

0

rsin

)rdr

0

若D:

r(

0

2

则有f(rcos

D

rsin

)rdrd

2()

df(rcos

00

rsin

)rdr

9.4二重积分的应用

二重积分的应用主要在几何方面和物理方面。

几何应用之一是求曲线所围成的面积,应用之二是求曲面所围成的立体的体积;物理应用主要是平面薄片的质量。

【主要概念梳理】

(1)空间立体的体积V设空间立体由曲面1:

zf(x,y)与2:

zg(x,y)所围成,在

xoy面投影为平面区域D,并且f(x,y)g(x,y).则

V[f(x,y)g(x,y)]d或Vdv.

D

(2)

曲面面积S

设光滑曲面

在xoy面上的投影区域

同理可得:

设光滑曲面为:

xx(y,z),则S1xy2xz2dydz,

Dyz

其中Dyz为在yoz面上的投影区域。

设光滑曲面为:

yy(x,z),则S1yx2yz2dxdz,其中Dxz为

Dxz

在xoz面上的投影区域。

(3)平面薄片的质量

设平面薄片的面密度为(x,y),物体所占区域为D,则它的质量为m(x,y)d,其中dm(x,y)d,称为质量元素。

D

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1