自动旋转门的设计.docx

上传人:b****5 文档编号:7888717 上传时间:2023-01-27 格式:DOCX 页数:31 大小:280.46KB
下载 相关 举报
自动旋转门的设计.docx_第1页
第1页 / 共31页
自动旋转门的设计.docx_第2页
第2页 / 共31页
自动旋转门的设计.docx_第3页
第3页 / 共31页
自动旋转门的设计.docx_第4页
第4页 / 共31页
自动旋转门的设计.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

自动旋转门的设计.docx

《自动旋转门的设计.docx》由会员分享,可在线阅读,更多相关《自动旋转门的设计.docx(31页珍藏版)》请在冰豆网上搜索。

自动旋转门的设计.docx

自动旋转门的设计

第一章旋转门综述

 

§1.1旋转门的课题背景

自动旋转门是楼宇设备中的光机电一体化技术产品,它给人以亲切大方的感觉,同时营造出奢华的气氛,其全新的概念,宽敞的开放门面和高格调的设计,堪称建筑物的点睛之笔,立足于建筑时代大潮的最前端。

大厦在需要持续不断的人流出入的同时,又要保持建筑物内良好的空气循环及环境的优美,这是建筑师所遇到的一大难题,而旋转门为大厦提供了理想的解决方案,它可有效地防风、防尘和隔音,从而改善了大厦入口附近的环境。

旋转门的最大优点在于它"永远开门,又永远关门",即对于行人来说,门总可以打开,可对于建筑物来说门又总是关着。

自动旋转门由于其永远开启的同时又永远关闭的特点,使其动态密封效果较好。

因此,自动旋转门在功能方面具有独特的发展。

自动旋转门的最大优点在于它“永远开门,又永远关门”,即对于人员来说,门总可以打开,可对于建筑物来说门又总是关着。

因此,自动旋转门在保安功能方面具有独到的发展,但在人员流量方面自动旋转门却没有优势,因为门的转速是固定的,每个门翼之间可容纳的人员也是有限的。

每种自动旋转门都有标定的人员流量数值。

自动旋转门由于其永远开启的同时又永远关闭的特点,使其动态密封效果在经常使用的条件下相对于其他自动门要好。

由于自动旋转门的人流量有限,通常在自动旋转门两侧另设自动或手动平开门,一方面增加通行能力,另一方面当自动旋转门出现故障时,不影响人的通过。

但在静态密封效果方面,自动旋转门远不如其他自动门,因为其门体运动方式决定着只能使用毛条密封。

§1.2国内外旋转门发展现状

§1.2.1国外旋转门发展现状

自1903年宝盾公司在荷兰生产出第一座旋转门,旋转门至今已有一百年的历史,发展到今天,旋转门已具有可靠的安全系统和先进的驱动技术,其智能化高格调的设计为现代化楼宇建筑的确入口提供了完美的选择。

国外著名厂家有:

荷兰的B00NEDAM瑞典的BESAM德国的多玛、盖泽日本的纳博克、寺冈等。

由于国外自动旋转门发展较早,其技术也较为成熟。

自动旋转门的传动系统技术具有节能、低噪声、传动平稳、寿命长、性能可靠等优点;控制系统采用数字化设计的系统作为控制中枢,有功能更强大,操作更简便等优点;检测安全系统采用先进的红外与微波感应技术,用于感知物体的移动,操纵门体的动行,使用各种安全检测传感器,实现防挤、防夹和防撞功能。

与此同时某些厂家生产的自动旋转门还具有远程控制和液晶显示。

利用当前先进的通信和网络技术,使自动门的维护不再受时间、地域和专业维护技术的限制,制造商可通过internet与设备进行实时交流,校正偏差,让自动门达到最佳运行状态。

当出现异常时,可准确传回故障信息,实现远程维护,缩短维护、保养时间;采用液晶显示屏,进行可视化设计,全面显示门体转速、状态和故障等信息。

§1.2.2国内旋转门发展现状

1、我国旋转门技术的发展:

我国的全自动旋转门技术来源于荷兰、瑞典、日本等国。

90年代后期旋转门开始在我国建筑领域中得到迅速推广和广泛的使用。

旋转门的厂家:

国内专业厂家:

北京有凯必盛、宝盾、青木、智辉、巨方圆、信步等。

外省市有上海康育、广州盛维、沈阳金海、青岛帝盟等。

2、旋转门在我国的市场前景:

随着我国国民经济持续稳定地增长,2008年北京申奥成功和WTO的加入。

从本世纪开始,我国进入了全面建设小康社会的新阶段,创造美好生活环境是装饰业发展的巨大推动力。

现代城市建筑物装饰装修中,将高科技应用到建筑物的外观形象上,使城市建筑的入口体现出智能化。

对门的选择由单一的功用型向个性化、品位化发展,旋转门以其全新的概念,宽敞开放的门面和高格调的设计,自然成为当代的建筑装饰的主流,无可质疑的必选设施。

堪称建筑物的点睛之笔。

但是国家对自动门产品质量、安全性、节能性、噪音、施工质量、售后服务还没有统一的标准,所有国内建筑业院校都没有相关的专业或课程,也没有权威的咨询机构,自动门市场的管理尚处于无序状态。

随着国内建筑业的发展,这一状况一定会有所改变。

 

第二章方案的确定

 

旋转门主要设计是从门体,传动系统,控制系统,检测系统,安全系统等几个方面进行考虑。

从上面几个方面具体分析可以设计两种方案。

§2.1方案一的设计

§2.1.1框架总成:

分为固定部分和旋转部分,均由铝型材框架和玻璃等组成。

立柱、曲壁、门扉一般采用高强度铝合金型材,结构简洁,精密牢固。

圆周导轨悬挂整个旋转门体及其驱动设计,每扉门三面安装密封毛条与地面天花及曲壁紧密接触,使门扉在任何位置均处于密闭状态;门扉玻璃采用(3+3)夹胶玻璃或6mm厚钢化玻璃,曲壁玻璃一般采用(4+4)夹胶玻璃,安全可靠。

§2.1.2传动系统:

由二个三相交流电机提供动力,用减速器带动旋转转盘驱动。

§2.1.3控制系统:

由单片机、变频器、功能开关组成。

由可编程控制器PLC、变频器、功能开关组成。

§2.1.4检测系统:

由红外传感器实现有无人自动检测,自动对电机启停进行操作。

§2.1.5安全系统:

主要有接触和非接触安全感应器。

旋转门入口立柱均装有安全胶条,防止行人夹伤,自动门入口右侧立柱胶条内装有内藏式防夹感应器,如受挤压门扉即马上停止运转。

胶条恢复正常,门扉则自动转动;每扇门扉底边胶条内装有内藏式防碰感应器,碰到物体或行人门扉立即停止运转。

胶条恢复正常,门扉则自动转动。

§2.2方案二的设计

§2.2.1框架总成:

分为固定部分和旋转部分,均由铝型材框架和玻璃等组成立柱、曲壁、门扉一般采用高强度铝合金型材,结构简洁,精密牢固。

采用中心门轴结构安装和驱动旋转门体设计,每扉门三面安装密封毛条与地面天花及曲壁紧密接触,使门扉在任何位置均处于密闭状态;门扉玻璃采用(3+3)夹胶玻璃或6MM厚钢化玻璃,曲壁玻璃一般采用(4+4)夹胶玻璃,安全可靠。

§2.2.2驱动系统:

由一个三相交流电机提供动力,用减速器带动中心门轴驱动。

§2.2.3控制系统:

由可编程控制器PLC、变频器、功能开关组成。

§2.2.4检测系统:

由红外传感器实现有无人自动检测,自动对电机启停进行操作。

§2.2.5安全系统:

主要有接触和非接触安全感应器。

旋转门入口立柱均装有安全胶条,防止行人夹伤,自动门入口右侧立柱胶条内装有内藏式防夹感应器,如受挤压门扉即马上停止运转。

胶条恢复正常,门扉则自动转动;每扇门扉底边胶条内装有内藏式防碰感应器,碰到物体或行人门扉立即停止运转。

胶条恢复正常,门扉则自动转动。

§2.3方案选择

三翼旋转门采用方案二这种结构,即中心门轴通过轴承机构垂直安装于地面,三个呈发散式固定在中心门轴上,各门扇之间的角度相等。

中心门轴的上方安装电动机及其他电气控制部件,再配以感应装置和安全装置,就成为一个完整的自动旋转门。

但是,这种旋转门门翼与中心轴的固定方式决定了门扇宽度不能太大,所以这种旋转门的直径最大只有约4m。

为了解决这一问题,工程师们将中心门轴设计成了门扇固定在大钢管上面,相对减小了门扇宽度,增加了电机对门中心的旋转作用力矩,使这种旋转门的最大直径扩大到6m。

这种结构是稳定性,使用的可靠性很高,使用寿命长。

考虑到旋转门在停止时一定耍密封,所以三翼旋转门的每个分隔可以容纳更多的人,可是门的净开口宽度较小。

而方案一由于采用两个电机驱动也给驱动系统带来了许多麻烦,同时也不利于节能。

在控制系统上,由于单片机的程序设计和接口设计较为繁杂,只利于大批量生产,不适于单件设计。

综合两种方案进行比较,可以看出第二种方案在具体设计中更具有实用性,完善性。

故选择第二种方案。

 

第三章三翼自动旋转门控制系统设计

 

§3.1硬件设计

§3.1.1变频器容量选择计算

变频器容量的选用有很多因数决定,列如电动机的容量,电动机的额定电流,电动机加速时间等,其中最主要的电动机的额定电流。

表3.1电机参数表

电动机型号

额定功率(W)

额定电流(A)

额定电压(V)

效率(%)

功率因素

电机转动惯量

飞轮的转动惯量

Y881-4

550

1.51

380

73

0.76

2.2

0.0018

0.6

1、驱动一台电动机

对于连续运转的变频器必须同时满足下列3项计算公式:

满足负载输出/kVA:

式(3.1)

满足电动机容量/kVA:

式(3.2)

满足电动机电流/A:

式(3.3)

式中:

为变频器的容量/kVA

负载要求的电动机轴输出功率/kw

电动机额定电压/v

电动机额定电流/A

电动机效率

电动机功率因数

电流波形补偿系数

k是电流波形补偿系数,由于变频器的输出波形并不是完全的正弦波,而含有高次谐波的成分,其电流应有所增加。

对PWM控制方式的变频器,k约为1.05~1.1。

2、指定变频器的启动加速时间

变频器产品型号所列的变频容量,一般以标准条件为准,在变频器过载能力以内进行加减速,在进行急剧加速和减速时,一般利用失速防止功能,以避免变频器跳闸,但同时也加长了加减速时间。

如果生产设备对加速时间有特殊要求时,必须事先核实编破器的容量是否能够满足所要求的加速时间,如不能满足,则要选用加大一档的变频器容量。

在指定加速时间的情况下,变频器所必需的容量计算如下:

式(3.4)

式中:

为变频器的容量/kVA

电流补偿系数,对PWM控制方式的变频器,k约为1.05~1.1

电动机效率

电动机功率因数

电动机额定转速/(r/min)

电动机轴上的飞轮力矩/(

电动机加速时间/s

负载转矩/(

3、指定变频器的减速时间

降低变频器的输出频率,就可以实现电动机减速。

加快变频器输出频率的降低速率,可使电动机更快的减速。

当变频器输出频率对应的速度低于电动机的实际转速时,电动机就进行再生制动。

在这种运行状况下,异步电动机将变成异步发电机,而负载的机械能将被转换为电能并反馈给变频器。

当反馈能量过大时,变频器本身的过电压保护电路将会动作并切断变频器的输出,使电动机处于自由减速状态,反而无法达到快速减速的目的。

为了避免出现上述现象,使上述能量能在直流中间回路的其他部分消耗,而不造成电压升高。

在电压星变频器中,一般都在直流中间回路的电容器两端并联上制动三极管和制动电阻。

当直流中间回路的电压升高到一定的电压值,制动三极管就回导通,使直流电压通过制动电阻放电,既电动机回馈给变频器的直流中间回路的能量,以热能的形式在制动电阻上消耗掉。

制动电阻的选择方法:

(1)计算制动力矩

式(3.5)

式中:

动力矩/

电动机转动惯量/

折算至电动机轴的负载转动惯量/

减速开始速度/(

减速完了速度/(

减速时间/s

负载转矩/

(2)计算制动电阻

的阻值

在进行再生制动时,即使不加放电的制动电阻,电动机内部也将有20%的铜损被转换为制动力矩。

考虑这个因数,可以按下式初步计算制动电阻的预选值。

式(3.6)

式中:

制动电阻

直流电路电压/V

对200V级变频器,

=380V

对400V级变频器,

=760V

制动转矩/(

电动机额定转矩/(

减速开始速度/(

上式中,如果

,则没必要加制动电阻。

放电电路由制动三极管和制动电阻串联而成,因此,制动三极管本身允许通过电流

就是放电电路的最大允许值。

所以制动电阻的最小值

由上可见,制动电阻

的阻值应由

来决定。

有的变频器生产厂家在产品目录中。

给出制动电阻最小值的参考值,可供用户在选择制动电阻时参考。

(3)计算制动电阻平均消耗的功率

/kW

如前所述,电动机额定转距的20%制动转距由电动机内部损失产生,所以可以按下式求得电动机制动时,制动电阻上消耗的平均功率:

式(3.7)

=

(5.76-0.2

2.2)

1440

=0.802

由于三翼自动旋转门是恒转矩负载,故变频器选用通用型的。

又因为三翼旋转门的转速不允许超过额定值,电机不会过载。

因而可以选用通用的变频器,只要所选用的变频器满足一般环境下使用即可。

根据以上的计算的数据,选用佳灵JP6C-T9-0.75。

该变频器的参数如下;

表3.2变频器参数表

变频器型号JP6C-T79

-0.75

适配电动机功率/kW

0.75

额定容量/kVA

2.0

电压/V

3相,380~440

额定频率/Hz

50/60

额定电流/A

2.5

额定过载

短时间

额定电流的150%1min

相数,电压,频率

3相,380~440,50Hz/60Hz

允许波动

电压10%~-15%,频率5%~-5%

瞬间电压降低范围

310V以上,继续运转

所需电源容量/kVA

1.2

调整

最高频率/Hz

50~400可变设定

基本频率/Hz

50~400可变设定

启动频率/Hz

0.5~60可变设定

载波频率/Hz

2~6可变设定

精度

模拟设定

设定分辨率

模拟设定

电压/频率特性

用基本频率可变设定320~440V

电矩提升

自动:

按照负载转矩,调整至最佳

手动设定:

0.1~20.0编码设定

启动转矩

150%以上(转矩矢量控制)

制动转矩

100%以上

可选使用时

150%以上(用DBR时)

直流制动

可设定制动开关开始频率,时间等

外壳防护等级

IP40

冷却方式

自冷

质量/kg

2.4

§3.1.2传感器与安全系统的设计

1、检测传感器的选用

检测系统是由安装于门口上面的四个传感器来实现的,其主要功能是感知人的进出从而发出开门信号。

红外传感器的选择主要考虑检测范围和输出形式及其特点。

ADS-A型门传感器是较好的选择。

它的检测范围可调,安装高度在门的设计高度范围内,其输出形式为继电器接点,可以直接和控制器相连。

那么此检测传感器就可以选择这个。

2、安全系统设计

为防止三翼旋转门在工作过程中因某些原因而发生伤人的事故出现,那么就需要配置一定的安全系统。

主要采用以下方式。

红外线防夹安全感应器防止门扇与曲壁柱之间夹伤行人,当人在门扇与曲壁立柱安全距离内时,感应器与接近开关信号同时生效,门扇应马上停止。

防撞胶条安装于入口右侧门立柱上,胶条内装有内藏式感应器,如遇物体碰撞或受压,门扇马上停止转动,防止夹伤行人,胶条内感应器恢复正常后,转门也随之恢复正常运转。

每扇门扉底边装有全开宽内藏式感应器,如碰到物体或受压,门扇马上停止转动,防止门扇打倒行人,胶条内感应器恢复正常后,转门也随之恢复正常运转。

此外,还采用了4只测量范围为5mm的电感式接近开关。

接近开关用于防夹位置区域设定、直流制动封门及锁门定位。

(1)防夹接近开关的选用由于在出入口两个防夹区域内要安装了防夹传感器。

而防夹感应器是用来感应人是否处于防夹区域内,而不知道是否门扇已经靠近防夹区域内,所以仅靠防夹传感器是无法鉴别人是否即将受夹或正在受夹。

则需要一个接近开关来判断门翼也走到了防夹区域内。

如果在防夹区域内,则接近感应器发出信号表示,如果此时有人进入防夹区则有可能被夹。

两信号同时有效时,则使门停转制动。

由于人的宽度一般在0.5m以下,可设此距离为接近感应器感应距离。

当门翼靠近曲壁门柱0.5m时,接近开关传感器就可以发出信号。

因此选择光电式BR系列接近传感器,其型号为BPR100-DDT传感器。

(2)防夹传感器的选用防夹传感器是用来检测人是否在防夹区域内用的。

应采用红外线传感器检测,其检测方式是竖直的。

因此当人在防夹区域时,传感器只有通过竖直检测才不会误判。

假如传感器不是竖直的,而是发散的,如人正常经过转门区时,防夹传感器就有可能检测到人的存在,而此时门翼又有可能正好在防夹接近传感器范围内。

两者信号同时有效,使门体无故停转,而造成不必要的麻烦。

因此可以选择红外垂直防夹传感器。

红外线防夹传感器安装在门的进出口的两个防夹区域内,即进出口的右边立柱旁的华盖上,其具体位置根据调节而定。

基于以上条件,可以选用型号为BX15M-TFR。

(3)直流制动接近开关选用由于当电动机停转时,门要停在指定的位置,而门停转时,电机要先停转而门体有一定惯性而使得门无法停在指定的位置上。

这时我们就需要接近开关,当门靠近门停位置时,就产生信号发出制动信息,使门体在这个位置。

接近开关的感应距离过大,会使门制动后停在指定位置的前边。

感应位置过小,由于接近开关也有一个响应时间,则使门停超过门应停的位置。

根据相关自动门产品类型,可选用CR系列电容圆柱型接近开关为8mm的型号,PNP输出。

(4)锁门接近开关的选用当锁门时,为了让门精确的停位在上锁的位置,同样需要一接近开关提前感应锁门位置的临近,发出锁门信号使门体精确停在这个位置便于我们上电磁锁和机械锁,而无需人再来推门体使其准确停位。

接近开关的感应距离过小都到不了门体的精确停位,而使得无法上锁。

所以感应距离为适当才可。

根据相关自动门产品类推,可选用5mm感应距离高周波振动角柱型接近开关

可选择型号为PS12-4DN,常开触点,PNP输出,三线连接。

(5)防碰撞传感器的选用防碰传感器主要时为了防止人和门的速度不一致时,旋转门翼打到行人;而防撞传感器则是为了防止人因不小心撞在门体的立柱上,而引起旋转门体旋转过来撞伤行人。

其采用接触式传感器防夹安全带来实现,它是以向其施加垂直压力致使触带内的导电体互相接触,这导致电阻和电流改变而产生开关信号的。

防碰传感器安装在两扇旋转门翼的底部,而防撞传感器安装在门体的立柱上。

选用型号ASR-001。

(6)接近开关的选用而锁门接近开关则时为了看门翼是否靠近门的锁门位置,因此应该安装在门安装电子锁的位置附近。

选用型号ASR-002。

§3.1.3控制系统功能特点

1、变速功能旋转门设有低速,中速,高速三种旋转速度,分别对应残疾,middle和high三个按钮进行切换,以适应残疾人通过,正常运转和紧急疏散对转速的不同要求。

2、自动转停功能来人时自动启动,并以正常转速动转,15s时无人进出,则自动停转并封门。

3、防夹功能当门扇运转靠近曲壁立柱时,如果行人试图从两者之间(防夹区)进入旋转门,则门立即自动停转以防夹伤行人。

行人离开防夹区,门自动恢复运转。

4、防撞功能行人紧靠右侧立柱或遇到物体碰撞右侧立柱,则旋转门马上停转,以防止撞伤行人或撞坏物体,行人或物体离开右侧立柱,自动门恢复运转。

5、防碰功能行人在旋转门内通行过程中,如遇到门扇碰到行人脚后跟,则门立即停转,以防止碰伤行人。

行人离开门扇,门自动恢复旋转。

6、锁门功能采用电磁锁方式锁门,只要转动钥匙既可完成自动锁门工作,快捷方便。

7、急停功能当出现紧急意外事故十,按下急停按钮,门立即停转,解除急停信号,门又自动恢复运转。

8、暂停功能(STOP钮)与急停功能相当,不同的是按STOP钮后,必须用残疾,middle和high三个按钮中的一个进行恢复。

9、残疾优先功能当按下残疾按钮后,30s内门始终以2r/min的速度低速运转,此时按middle和high钮无效,以确保残疾人安全通过。

30s后来人,门自动以正常速度运转。

图3.1控制系统接线图

10、电动机过载保护功能当电动机过载时,门停转并且指示灯闪烁报警。

过载消除后门自动恢复运转。

11、变频器报警输出和延时自动复位功能当变频器过压或过流时,关闭输出,门停转并报警(指示灯闪烁),延时3s自动复位。

12、漏电保护。

3.1.4控制系统驱动控制原理

1、电气控制系统接线方案

2、传感器设置方案

红外线被动式感应器安装于旋转门的进口和出口华盖上,每处各安装两个红外传感器,感应行人进入门体,门扇马上以正常的速度旋转。

红外线防夹安全感应器防止门扇与曲壁柱之间夹伤行人。

当门扇接近曲壁立柱时,感应器与接近开关信号同时生效,门扇马上停止。

防撞胶条安装于入口右侧门立柱上,胶条内装有内藏式感应器,如遇物体碰撞或受压,门扇马上停止转动,防止夹伤行人。

胶条内感应器恢复正常以后,转门也随之恢复正常运转。

没扇门扉底边装有全开内藏式感应器,如碰到物体或受压,门扇马上停止转动,防止门扇打倒行人。

胶条内感应器恢复正常后,转门也随之运转。

此外,还采用了四只测量范围为5mm的电感式接近开关。

接近开关用于防夹位置区域设定,直流制动封门及锁门定位。

§3.1.5PLC系统控制分析及地址分配设计

1、节点分析及机型的选择通过对旋转门控制要求的分析,PLC控制输入信号有22个,输出接点共8个。

按照预留15%-20%的接点数来计算,输入接点至少要30个,输出接点至少要10个。

本系统为个简单控制系统,按一般经验来估算,同时由上段对I/O接点的分析主要有:

开关量输入字节数:

30×15=450

开关量输出字节数:

10×8=80

系统推断定时器/计数器字节数:

8×1=8

总计大约需要538个字节数容量。

加上预留30%,有1K的程序容量足够了。

由以上可得,同时兼顾经济性原则。

PLC产品中OMRON系列可编程控制器是当今国内外最新,最具特色、最具代表性的微型PLC。

在此系列PLC中设置了高数计数器,对来自特定的输入继电器的高频脉冲进行中断处理,扩大了PLC的应用领域。

本系统选择了COM1-CPU11-E型PLC。

由PLC型号主回路电压AC(100~240)V;输入端参数为电压DC24V,电流5/7mA;继电器输出端电压AC150V,DC30V以内。

故本系统选用直流输出方式。

表3.3PLC性能参数表

性能指标

COM1-CPU11-E

程序存储容量

3.2KB

数据存储容量

1KB

I/O电数

128位

指令类型

117种指令

基本指令执行时间

0.5us~1.5us

扩展I/O模块数量

7块

记时/记数区

512记时器/记数器

2、开关的选择

本控制系统为PLC控制,各种开关的容量要求不高,普通的开关足已,主要考虑输入参数要求。

对急停、STOP、middle、high、残疾开关,选择普通按钮开关LA系。

Middl、high、残疾、开关为LA2,急停开关为LA2(红色),STOP关为LA2-A红色(十字型)。

3、电源的选择

PLC自带的输入口电源一般为直流24V。

输入口每一点的电流定额一般为7mA,这个电流是输入口短接时产生的最大电流(端口本身纯存在阻抗)。

当输入口上接有一定阻抗的负载时,其流过的电流就要减少,PLC输入口信号传递所需的最小电流一般为2mA左右,这样就规定了输入口接人的最大阻抗。

为了保障最小有效电流,输入口所接器件的总阻抗要小于2000欧。

从另一方面说,输入口机内电源功率一般只有几瓦,当输入口所接的传感器所需功耗较大时,需另配专用电源供电。

4、熔断器的选择

为了保护电路(短路保护)需要有熔断器FU,选择的依据是熔体的额定电流IR大于线路工作电流I(I=2A),所以选择RL1-15,熔体额定电流等级为4。

5、整流器的选择

为降低电压的波动对控制系统的不良影响,选择把交流变为低压直流供电。

因此,选择型号为ZBA-10/24型整流器,它的输入电压为交流220V,输出电压为直流0~24V,额定电流10A。

6、输出模块的确定输出模块的任务是将PLC内部低电平的控制信号,转换为外部所需电平的输出信号,以驱动外部负载。

输出模块有三种输出方式:

继电器输出、双向晶闸管输出、达林顿晶体管输出。

这几种输出形

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1