minitab部分因子设计响应面设计参数设计.docx

上传人:b****1 文档编号:752596 上传时间:2022-10-12 格式:DOCX 页数:17 大小:559.15KB
下载 相关 举报
minitab部分因子设计响应面设计参数设计.docx_第1页
第1页 / 共17页
minitab部分因子设计响应面设计参数设计.docx_第2页
第2页 / 共17页
minitab部分因子设计响应面设计参数设计.docx_第3页
第3页 / 共17页
minitab部分因子设计响应面设计参数设计.docx_第4页
第4页 / 共17页
minitab部分因子设计响应面设计参数设计.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

minitab部分因子设计响应面设计参数设计.docx

《minitab部分因子设计响应面设计参数设计.docx》由会员分享,可在线阅读,更多相关《minitab部分因子设计响应面设计参数设计.docx(17页珍藏版)》请在冰豆网上搜索。

minitab部分因子设计响应面设计参数设计.docx

minitab部分因子设计响应面设计参数设计

北京信息科技大学经济管理学院

《工程优化技术》

课程结课报告

成绩:

_______________

班级:

__工商1002_____

学号:

__2010011713____

姓名:

__魏坡_______

日期:

_2013年6月7日_

 

部分因子试验设计

1.实验设计背景

部分因子试验设计与全因子试验设计的不同之处在于大大减少了试验的次数,具体表现在试验设计创建阶段的不一致,下面主要就部分因子试验设计的创建进行讲述。

2.因子选择

用自动刨床刨制工作台平面的工艺条件试验。

在用刨床刨制工作台平面试验中,考察影响其工作台平面光洁度的因子,并求出使光洁度达到最高的工艺条件。

3.实验方案

共考察6个因子:

A因子:

进刀速度,低水平1.2,高水平1.4(单位:

mm/刀)

B因子:

切屑角度,低水平10,高水平12(单位:

度)

C因子:

吃刀深度,低水平0.6,高水平0.8(单位:

mm)

D因子:

刀后背角,低水平70,高水平76(单位:

度)

E因子:

刀前槽深度,低水平1.4,高水平1.6(单位:

mm)

F因子:

润滑油进给量,低水平6,高水平8(单位:

毫升/分钟)

要求:

连中心点在内,不超过20次试验,考察各因子主效应和2阶交互效应AB、AC、CF、DE是否显著。

由于试验次数的限制,我们在因子点上只能做试验16次,另4次取中心点,这就是

的试验,通过查部分因子试验分辨度表可知,可达分辨度为Ⅳ的设计。

具体操作为:

选择[统计]=>[DOE]=>[因子]=>[创建因子设计],单击打开创建因子设计对话框。

在“设计类型”中选择默认2水平因子(默认生成元),在“因子数”中选定6。

单击“显示可用设计”就可以看到下图的界面,可以确认:

用16次试验能够达到分辨度为Ⅳ的设计。

单击“设计”选项,选定1/4部分实施,在每个区组的中心点数中设定为4,其他的不进行设定,单击确定。

单击“因子”选项,设定各个因子的名称,并设定高、低水平值。

点击确定。

再点击确定后,就可以得到试验计划表,如下:

与全因子设计不同的是,我们不能肯定这个试验计划表一定能满足要求,因为部分因子试验中一定会出现混杂,这些混杂如果破坏了试验要求,则必须重新进行设计,从运行窗中可以看到下列结果:

设计生成元:

E=ABC,F=BCD

别名结构

I+ABCE+ADEF+BCDF

A+BCE+DEF+ABCDF

B+ACE+CDF+ABDEF

C+ABE+BDF+ACDEF

D+AEF+BCF+ABCDE

E+ABC+ADF+BCDEF

F+ADE+BCD+ABCEF

AB+CE+ACDF+BDEF

AC+BE+ABDF+CDEF

AD+EF+ABCF+BCDE

AE+BC+DF+ABCDEF

AF+DE+ABCD+BCEF

BD+CF+ABEF+ACDE

BF+CD+ABDE+ACEF

ABD+ACF+BEF+CDE

ABF+ACD+BDE+CEF

从此表得知,计算机自己选择的生成元是:

E=ABC,F=BCD。

后面的别名结构中列出了交互作用项的混杂情况,即每列中互为别名的因子有哪些;从上表可以看出,主效应与三阶及四阶交互作用混杂,二阶交互作用与四阶交互作用混杂,三阶交互作用与四阶交互作用混杂;关键是要检查一下题目所要求的2阶交互作用情况,将3阶以上的交互作用忽略不计,混杂的情况有:

AB=CE,AC=BE,AD=EF,AF=DE,AE=BC=DF,BD=CF,BF=CD。

本例中所要求的4个2阶交互作用是AB,AC,CF,DE,显然可以看到,这四个2阶交互作用均没有混杂。

因此可以看到此试验计划是可行的。

 

响应面设计的分析

1.实验设计背景

提高烧碱纯度问题。

在烧碱生产过程中,经过因子的筛选,最后得知反应炉内压力及温度是两个关键因子。

在改进阶段进行全因子试验,因子A压力的低水平和高水平分别取为50帕和60帕,因子B反应温度的低水平和高水平分别取为260及320摄氏度,在中心点处也作了3次试验,试验结果在数据文件:

DOE_烧碱纯度。

2.实验因子的选择

对于这批数据按全因子试验进行分析,具体操作为:

选择[统计]=>[DOE]=>[因子]=>[分析因子设计],打开分析因子设计对话框。

首先将全部备选项列入模型,删除在模型中包括中心点,在“图形”中的残差与变量下将压力和温度选入进去。

得到的结果如下:

纯度的效应和系数的估计(已编码单位)

项效应系数系数标准误TP

常量96.9610.4150233.630.000

压力-2.665-1.3320.5490-2.430.094

温度-0.765-0.3820.5490-0.700.536

压力*温度0.0350.0180.54900.030.977

S=1.09803PRESS=134.203

R-Sq=68.01%R-Sq(预测)=0.00%R-Sq(调整)=36.01%

对于纯度方差分析(已编码单位)

来源自由度SeqSSAdjSSAdjMSFP

主效应27.68747.687453.843723.190.181

2因子交互作用10.00120.001230.001230.000.977

残差误差33.61703.617011.20567

弯曲13.51783.517813.5178170.920.014

纯误差20.09920.099200.04960

合计611.3057

从上述表中可以看到,主效应和2因子交互作用对应的概率P值均大于0.1,说明模型的总效应不显著,而且弯曲对应的概率P值为0.014,拒绝原假设,认为存在明显的弯曲趋势;R-Sq和R-Sq(预测)的值都比较小,说明了模型的总效果不显著。

从残差与各变量的图也验证了存在严重的弯曲现象。

这些都表明,对响应变量单纯地拟合一阶线性方程已经不够了,需要再补充些“星号点”,构成一个完整的响应曲面设计,拟合一个含二阶项的方程就可能问题了。

补充的4个星号点的实验结果见数据表:

DOE_烧碱纯度(响应2)。

下面对全部11个点构成的中心复合序贯设计进行分析,拟合一个完整的响应曲面模型。

分析如下:

第一步:

拟合选定模型。

选择[统计]>[DOE]>[响应曲面]>[分析响应曲面设计],打开分析响应曲面设计对话框。

点击窗口“项”以后,可以看到模型中将全部备选项都列入了模型,包括A(压力)、B(温度)以及它们的平方项AA、BB和交互作用项AB;打开“图形”窗口,选定“正规”、“四合一”以及残差与变量,并将压力和温度都选入残差与变量中;打开“储存”窗口,选定“拟合值”、“残差”以及“设计矩阵”。

单击确定。

得到的结果如下:

纯度的估计回归系数

项系数系数标准误TP

常量97.78040.10502931.0660.000

压力-1.89110.09114-20.7500.000

温度-0.60530.09092-6.6570.001

压力*压力-2.58220.15339-16.8350.000

温度*温度-0.46150.15314-3.0140.030

压力*温度0.03510.182530.1920.855

S=0.181900PRESS=0.693667

R-Sq=99.35%R-Sq(预测)=97.27%R-Sq(调整)=98.70%

对于纯度的方差分析

来源自由度SeqSSAdjSSAdjMSFP

回归525.231025.23105.04620152.510.000

线性215.712715.71277.85635237.440.000

平方29.51719.51714.75853143.820.000

交互作用10.00120.00120.001230.040.855

残差误差50.16540.16540.03309

失拟30.06620.06620.022080.450.747

纯误差20.09920.09920.04960

合计1025.3964

结果解释:

(1)看方差分析表中的总效果。

在本例中,回归项的P值为0.000,表明应该拒绝原假设,认为本模型总的来说是有效的。

看方差分析表中的失拟现象,本例中,失拟项对应的P值为0.747,明显大于显著性水平0.05,接受原假设,认为本模型中不存在失拟现象。

(2)看拟合的总效果。

本例中,R-Sq与R-Sq(调整)比较接近,认为模型的拟合效果比较好;R-Sq(预测)比较接近于R-Sq值且这个值比较大,说明将来用这个模型进行预测的效果比较可信。

(3)各效应的显著性。

从表中可以看到,压力、温度以及它们的平方项对应的概率值都小于显著性水平,说明这些效应都是显著的;而压力和温度的交互效应项对应的概率值为0.855,显然大于显著性水平,认为该效应项是不显著的。

第二步:

进行残差诊断

利用自动输出的残差图来进行残差诊断。

从上述残差图中可以看出,残差的状况是正常的。

第三步:

判断模型是否需要改进。

根据第一步的分析,我们得知压力和温度的交互作用项是不显著的,应该予以剔除,因此需要重新拟合新的模型,使得新的模型中不包含交互作用项。

得到的结果为:

纯度的估计回归系数

项系数系数标准误TP

常量97.78040.096221016.1770.000

压力-1.89110.08350-22.6470.000

温度-0.60530.08331-7.2650.000

压力*压力-2.58220.14054-18.3730.000

温度*温度-0.46150.14031-3.2890.017

S=0.166665PRESS=0.546550

R-Sq=99.34%R-Sq(预测)=97.85%R-Sq(调整)=98.91%

对于纯度的方差分析

来源自由度SeqSSAdjSSAdjMSFP

回归425.229825.22986.30744227.070.000

线性215.712715.71277.85635282.830.000

平方29.51719.51714.75853171.310.000

残差误差60.16670.16670.02778

失拟40.06750.06750.016870.340.836

纯误差20.09920.09920.04960

合计1025.3964

纯度的估计回归系数,使用未编码单位的数据

项系数

常量-59.9731

压力5.36834

温度0.134611

压力*压力-0.0512244

温度*温度-2.56700E-04

结果解释:

(1)先看方差分析表中的总效果。

回归项对应的P值为0.000,拒绝原假设,说明回归模型总的来说是有效的;看方差分析表中的失拟现象,可以看到失拟对应的P值为0.836,大于0.05,接受原假设,即可以判定,本模型删去了一项,但没有造成失拟现象。

(2)看删减后的模型是否比原来的有所

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1