电力系统潮流计算课程设计.docx

上传人:b****6 文档编号:7316072 上传时间:2023-01-22 格式:DOCX 页数:16 大小:231.71KB
下载 相关 举报
电力系统潮流计算课程设计.docx_第1页
第1页 / 共16页
电力系统潮流计算课程设计.docx_第2页
第2页 / 共16页
电力系统潮流计算课程设计.docx_第3页
第3页 / 共16页
电力系统潮流计算课程设计.docx_第4页
第4页 / 共16页
电力系统潮流计算课程设计.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

电力系统潮流计算课程设计.docx

《电力系统潮流计算课程设计.docx》由会员分享,可在线阅读,更多相关《电力系统潮流计算课程设计.docx(16页珍藏版)》请在冰豆网上搜索。

电力系统潮流计算课程设计.docx

电力系统潮流计算课程设计

 

电力系统潮流计算

1设计题目

图1潮流计算用图

变压器T1、T2:

SFL1-16000/110,(121±2×2.5﹪)/6.3,ΔPs=110kW,ΔP0=10.5kW,U0﹪=10.5,I0﹪=0.9;

变压器T3:

SFL1-8000/110,(110±5﹪)/6.6,ΔPs=52kW,ΔP0=12.76kW,

Us﹪=10.5,I0﹪=1.1;

变压器T4:

2×SFL1-16000/110,(110±2×2.5﹪)/10.5,ΔPs=62kW,ΔP0=11.6kW,Us﹪=10.5,I0﹪=1.10。

导线型号均为LGJ-150,参数r0=0.21Ω/km,x0=0.4Ω/km,b0=2.8×10-6S/km。

电网潮流计算

1.计算各元件参数,画出等值电路;

2.进行网络潮流计算;

3.不满足供电要求,进行调压计算。

2思路分析

这是一道潮流计算题,按照一般潮流计算的步骤将元件转换为等值参数,这里我们进行真实值的直接计算,并用近似计算计算。

由于负载给出,线路长度已知,我们可以将如图闭环的潮流计算分解成4个开环单电源的潮流问题进行计算,并计算是否有调压的必要。

3潮流计算过程

3.1各元件参数计算

1120Km线路

2100Km线路

370Km线路

4变压器T1,T2

5变压器T3

6变压器T4

 

3.2绘制等效电路

图3-1等效电路

3.3功率分布计算

3.3.1各元件功率损耗

1两台T4变压器并联损耗

2T3变压器损耗

3100Km与70Km线路交点4末端功率损耗

4120Km与100Km线路交点3末端功率损耗

51.4间100Km线路损耗

61.3间120Km线路损耗

72.4间70Km线路损耗

82.3间100Km线路损耗

位置1点总损耗

位置2点总损耗

3.4调压计算

3.4.1计算1.4线路上的电压值

位置4由G1提供的电压为

由于119.84的输入电压大于110额定值,所以调压关系不满足。

(经验证其他3路均不满足关系)

所以需要降低121KV端的输出电压和提高110的输入额定值

T1

的变压器取输出

T4

的变压器取输入

调压后:

所以满足调压关系。

经验证其他三路均满足,调压成功。

结论:

将变压器T1,T2置于

将变压器T3,T4置于

调压档可满足条件。

4程序

clear;

n=8;%input('请输入节点数:

n=');

nl=8;%input('请输入支路数:

nl=');

isb=1;%input('请输入平衡母线节点号:

isb=');

pr=0.00001;%input('请输入误差精度:

pr=');

B1=[128.5+20.1i0.000556i10;

1413.6+32.16i0.0002224i10;

1613.6+32.16i0.0002224i10;

231.495+40.335i01.051;

451.78+53.885i01.0251;

4610.2+24.12i0.0001668i10;

671.495+40.335i01.0251;

686.8+16.08i0.0004448i10;

891.78+53.885i01.0251;

8108.5+20.1i0.000556i10];

%input('请输入由支路参数形成的矩阵:

B1=');

B2=[0022922901;

00220002;

050+30.987i220002;

00220002;

040+27.79i220002;

00220002;

050+30.987i220002;

00220002;

060+37.18i220002;

200022922903];%input('请输入各节点参数形成的矩阵:

B2=');

Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl);

%-------修改部分------------

ym=1;

SB=100;UB=220;

%ym=input('您输入的参数是标么值?

(若不是则输入一个不为零的数值)');

ifym~=0

%SB=input('请输入功率基准值:

SB=');

%UB=input('请输入电压基准值:

UB=');

YB=SB./UB./UB;

BB1=B1;

BB2=B2;

fori=1:

nl

B1(i,3)=B1(i,3)*YB;

B1(i,4)=B1(i,4)./YB;

end

disp('B1矩阵B1=');

disp(B1)

fori=1:

n

B2(i,1)=B2(i,1)./SB;

B2(i,2)=B2(i,2)./SB;

B2(i,3)=B2(i,3)./UB;

B2(i,4)=B2(i,4)./UB;

B2(i,5)=B2(i,5)./SB;

end

disp('B2矩阵B2=');

disp(B2)

end

%%%---------------------------------------------------

fori=1:

nl%支路数

ifB1(i,6)==0%左节点处于低压侧

p=B1(i,1);q=B1(i,2);

else

p=B1(i,2);q=B1(i,1);

end

Y(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5));%非对角元

Y(q,p)=Y(p,q);

Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2;%对角元K侧

Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2;%对角元1侧

end

%求导纳矩阵

disp('导纳矩阵Y=');

disp(Y)

%----------------------------------------------------------

G=real(Y);B=imag(Y);%分解出导纳阵的实部和虚部

fori=1:

n%给定各节点初始电压的实部和虚部

e(i)=real(B2(i,3));

f(i)=imag(B2(i,3));

V(i)=B2(i,4);%PV节点电压给定模值

end

fori=1:

n%给定各节点注入功率

S(i)=B2(i,1)-B2(i,2);%i节点注入功率SG-SL

B(i,i)=B(i,i)+B2(i,5);%i节点无功补偿量

end

%===================================================================

P=real(S);Q=imag(S);

ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0;

whileIT2~=0

IT2=0;a=a+1;

fori=1:

n

ifi~=isb%非平衡节点

C(i)=0;D(i)=0;

forj1=1:

n

C(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);%Σ(Gij*ej-Bij*fj)

D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);%Σ(Gij*fj+Bij*ej)

end

P1=C(i)*e(i)+f(i)*D(i);%节点功率P计算eiΣ(Gij*ej-Bij*fj)+fiΣ(Gij*fj+Bij*ej)

Q1=C(i)*f(i)-e(i)*D(i);%节点功率Q计算fiΣ(Gij*ej-Bij*fj)-eiΣ(Gij*fj+Bij*ej)

%求P',Q'

V2=e(i)^2+f(i)^2;%电压模平方

%=========以下针对非PV节点来求取功率差及Jacobi矩阵元素=========

ifB2(i,6)~=3%非PV节点

DP=P(i)-P1;%节点有功功率差

DQ=Q(i)-Q1;%节点无功功率差

%===============以上为除平衡节点外其它节点的功率计算=================

%=================求取Jacobi矩阵===================

forj1=1:

n

ifj1~=isb&j1~=i%非平衡节点&非对角元

X1=-G(i,j1)*e(i)-B(i,j1)*f(i);%dP/de=-dQ/df

X2=B(i,j1)*e(i)-G(i,j1)*f(i);%dP/df=dQ/de

X3=X2;%X2=dp/dfX3=dQ/de

X4=-X1;%X1=dP/deX4=dQ/df

p=2*i-1;q=2*j1-1;

J(p,q)=X3;J(p,N)=DQ;m=p+1;

J(m,q)=X1;J(m,N)=DP;q=q+1;

J(p,q)=X4;J(m,q)=X2;

elseifj1==i&j1~=isb%非平衡节点&对角元

X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);%dP/de

X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);%dP/df

X3=D(i)+B(i,i)*e(i)-G(i,i)*f(i);%dQ/de

X4=-C(i)+G(i,i)*e(i)+B(i,i)*f(i);%dQ/df

p=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;%扩展列△Q

m=p+1;

J(m,q)=X1;q=q+1;J(p,q)=X4;J(m,N)=DP;%扩展列△P

J(m,q)=X2;

end

end

else

%===============下面是针对PV节点来求取Jacobi矩阵的元素===========

DP=P(i)-P1;%PV节点有功误差

DV=V(i)^2-V2;%PV节点电压误差

forj1=1:

n

ifj1~=isb&j1~=i%非平衡节点&非对角元

X1=-G(i,j1)*e(i)-B(i,j1)*f(i);%dP/de

X2=B(i,j1)*e(i)-G(i,j1)*f(i);%dP/df

X5=0;X6=0;

p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;

m=p+1;

J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;

J(m,q)=X2;

elseifj1==i&j1~=isb%非平衡节点&对角元

X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);%dP/de

X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);%dP/df

X5=-2*e(i);

X6=-2*f(i);

p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;

m=p+1;

J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;

J(m,q)=X2;

end

end

end

end

end

%=========以上为求雅可比矩阵的各个元素=====================

fork=3:

N0%N0=2*n(从第三行开始,第一、二行是平衡节点)

k1=k+1;N1=N;%N=N0+1即N=2*n+1扩展列△P、△Q

fork2=k1:

N1%扩展列△P、△Q

J(k,k2)=J(k,k2)./J(k,k);%非对角元规格化

end

J(k,k)=1;%对角元规格化

ifk~=3%不是第三行

%============================================================

k4=k-1;

fork3=3:

k4%用k3行从第三行开始到当前行前的k4行消去

fork2=k1:

N1%k3行后各行下三角元素

J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算

end

J(k3,k)=0;

end

ifk==N0

break;

end

%==========================================

fork3=k1:

N0

fork2=k1:

N1

J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算

end

J(k3,k)=0;

end

else

fork3=k1:

N0

fork2=k1:

N1

J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算

end

J(k3,k)=0;

end

end

end

%====上面是用线性变换方式将Jacobi矩阵化成单位矩阵=====

fork=3:

2:

N0-1

L=(k+1)./2;

e(L)=e(L)-J(k,N);%修改节点电压实部

k1=k+1;

f(L)=f(L)-J(k1,N);%修改节点电压虚部

end

%------修改节点电压-----------

fork=3:

N0

DET=abs(J(k,N));

ifDET>=pr%电压偏差量是否满足要求

IT2=IT2+1;%不满足要求的节点数加1

end

end

ICT2(a)=IT2;

ICT1=ICT1+1;

end

%用高斯消去法解"w=-J*V"

disp('迭代次数:

');

disp(ICT1);

disp('没有达到精度要求的个数:

');

disp(ICT2);

fork=1:

n

V(k)=sqrt(e(k)^2+f(k)^2);

sida(k)=atan(f(k)./e(k))*180./pi;

E(k)=e(k)+f(k)*j;

end

%===============计算各输出量===========================

disp('各节点的实际电压标幺值E为(节点号从小到大排列):

');

disp(E);

EE=E*UB;

disp(EE);

disp('-----------------------------------------------------');

disp('各节点的电压大小V为(节点号从小到大排列):

');

disp(V);

VV=V*UB;

disp(VV);

disp('-----------------------------------------------------');

disp('各节点的电压相角sida为(节点号从小到大排列):

');

disp(sida);

forp=1:

n

C(p)=0;

forq=1:

n

C(p)=C(p)+conj(Y(p,q))*conj(E(q));

end

S(p)=E(p)*C(p);

end

disp('各节点的功率S为(节点号从小到大排列):

');

disp(S);

disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~');

SS=S*SB;

disp(SS);

disp('-----------------------------------------------------');

disp('各条支路的首端功率Si为(顺序同您输入B1时一致):

');

fori=1:

nl

p=B1(i,1);q=B1(i,2);

ifB1(i,6)==0

Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));

Siz(i)=Si(p,q);

else

Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)./B1(i,5))-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));

Siz(i)=Si(p,q);

end

disp(Si(p,q));

SSi(p,q)=Si(p,q)*SB;

ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];

disp(ZF);

%disp(SSi(p,q));

disp('-----------------------------------------------------');

end

disp('各条支路的末端功率Sj为(顺序同您输入B1时一致):

');

fori=1:

nl

p=B1(i,1);q=B1(i,2);

ifB1(i,6)==0

Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));

Sjy(i)=Sj(q,p);

else

Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)*B1(i,5))-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));

Sjy(i)=Sj(q,p);

end

disp(Sj(q,p));

SSj(q,p)=Sj(q,p)*SB;

ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];

disp(ZF);

%disp(SSj(q,p));

disp('-----------------------------------------------------');

end

disp('各条支路的功率损耗DS为(顺序同您输入B1时一致):

');

fori=1:

nl

p=B1(i,1);q=B1(i,2);

DS(i)=Si(p,q)+Sj(q,p);

disp(DS(i));

DDS(i)=DS(i)*SB;

ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];

disp(ZF);

%disp(DDS(i));

disp('-----------------------------------------------------');

end

 

5心得体会

课程设计发端之始,思绪全无,举步维艰,对于理论知识学习不够扎实的我深感“书到用时方恨少”,于是想起圣人之言“温故而知新”,便重拾教材,对知识系统而全面进行了梳理,遇到难处先是苦思冥想再向同学请教,终于熟练掌握了基本理论知识,而且领悟诸多平时学习难以理解掌握的较难知识,学会了如何思考的思维方式,找到了设计的灵感。

当初没有思路,诚如举步维艰,茫茫大地,不见道路。

在对理论知识梳理掌握之后,茅塞顿开,柳暗花明,思路如泉涌,高歌“条条大路通罗马”。

顿悟,没有思路便无出路,原来思路即出路。

此次课程设计让我对课本上的知识有了更加深入的了解,特别是对系统设计部分的理论知识,在认真阅读课本的同时还要去图书馆查阅一些系统设计方面的资料,并且要考虑很多东西,更要学习一些其他以前未曾接触的知识。

在这个设计中最重要的部分就是参数的选择,只有把参数的问题解决了其他一切问题都好办,最终才能得到正确的仿真结果。

同时在设计过程中要求我们有足够的耐心。

这次课程设计,虽然这次课程设计没有想象中的那么简单,花费了很多的时间来搭建模型,调节参数,不断地实验,虽说花费了大量的时间但是最后终于完成了预定的目的,收获颇丰,也很好的锻炼了自己运用知识的能力。

重新巩固了有关双闭环直流调速系统的相关知识,培养了自己设计思维能力。

进一步学习了MATLAB软件的相关应用。

MATLAB软件在生活中的运用是非常广泛的,它在以后的专业课程的学习中应用也是很广泛的,掌握好了MATLAB,这为以后的专业课程的学习将有很大的帮助。

在以后的学习中,自己还要慢慢学习,慢慢探索,更好的掌握这个软件的运用。

在设计中收获知识、收获阅历、收获成熟,在此过程中,通过查找大量资料,以及不懈的努力,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。

努力的去弥补自己的缺点,发展自己的优点,去充实自己,只有在了解了自己的长短之后,则会更加珍惜我所拥有的,更加努力的去完善它,增进它。

只有不断的测试自己,挑战自己,才能拥有更多的成功和快乐!

享受过程,而不是结果!

认真对待每一件事,珍惜每一分一秒,学到最多的知识和方法,锻炼自己的能力,这个是我课程设计中学到的最重要的东西,也是以后都将受益。

 

参考文献

[1]何仰赞等.电力系统分析(第3版).华中科技大学出版社,2002

[2]李光琦,.电力系统稳态分析(第2版).北京:

水利电力出版社,1995

[3]华智明等电力系统稳态计算.重庆:

重庆大学出版社,1993

[4]陆敏政.电力系统分析.北京:

水利电力出版社,1990

[5]吴国炎等.电力系统分析.杭州:

浙江大学出版社,1993

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1