1相似三角形竞赛试题答案.docx
《1相似三角形竞赛试题答案.docx》由会员分享,可在线阅读,更多相关《1相似三角形竞赛试题答案.docx(11页珍藏版)》请在冰豆网上搜索。
1相似三角形竞赛试题答案
相似三角形
1如图2-64所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.
分析由于BC是△ABC与△DBC的公共边,且AB∥EF∥CD,利用平行线分三角形成相似三角形的定理,可求EF.
解在△ABC中,因为EF∥AB,所以
同样,在△DBC中有
①+②得
设EF=x厘米,又已知AB=6厘米,CD=9厘米,代入③得
2如图2-65所示.
ABCD的对角线交于O,OE交BC于E,交AB的延长线于F.若AB=a,BC=b,BF=c,求BE.
分析本题所给出的已知长的线段AB,BC,BF位置分散,应设法利用平行四边形中的等量关系,通过辅助线将长度已知的线段“集中”到一个可解的图形中来,为此,过O作OG∥BC,交AB于G,构造出△FEB∽△FOG,进而求解.
解过O作OG∥BC,交AB于G.显然,OG是△ABC的中位线,所以
在△FOG中,由于GO∥EB,所以
3如图2-66所示.在△ABC中,∠BAC=120°,AD平分
分析因为AD平分∠BAC(=120°),所以∠BAD=∠EAD=60°.若引DE∥AB,交AC于E,则△ADE为正三角形,从而AE=DE=AD,利用△CED∽△CAB,可实现求证的目标.
证过D引DE∥AB,交AC于E.因为AD是∠BAC的平分线,∠BAC=120°,所以
∠BAD=∠CAD=60°.
又
∠BAD=∠EDA=60°,
所以△ADE是正三角形,所以
EA=ED=AD.①
由于DE∥AB,所以△CED∽△CAB,所以
由①,②得
从而
4如图2-67所示.
ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:
分析与例2类似,求证中诸线段的位置过于“分散”,因此,应利用平行四边形的性质,通过添加辅助线使各线段“集中”到一个三角形中来求证.
证延长CB与EG,其延长线交于H,如虚线所示,构造平行四边形AIHB.在△EIH中,由于DF∥IH,所以
在△OED与△OBH中,
∠DOE=∠BOH,∠OED=∠OHB,OD=OB,
所以△OED≌△OBH(AAS).
从而
DE=BH=AI,
5(梅内劳斯定理)一条直线与三角形ABC的三边BC,CA,AB(或其延长线)分别交于D,E,F(如图2-68所示).求
分析设法引辅助线(平行线)将求证中所述诸线段“集中”到同一直线上进行求证.
证过B引BG∥EF,交AC于G.由平行线截线段成比例性质知
说明本题也可过C引CG∥EF交AB延长线于G,将求证中所述诸线段“集中”到边AB所在直线上进行求证.
6如图2-69所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.
分析由于图中平行线段甚多,因而产生诸多相似三角形及平行四边形.利用相似三角形对应边成比例的性质及平行四边形对边相等的性质,首先得到一个一般关系:
进而求d.
因为FG∥BC,HI∥CA,ED∥AB,易知,四边形AIPE,BDPF,CGPH均是平行四边形.△BHI∽△AFG∽△ABC,从而
将②代入①左端得
因为
DE=PE+PD=AI+FB,④
AF=AI+FI,⑤
BI=IF+FB.⑥
由④,⑤,⑥知,③的分子为
DE+AF+BI=2×(AI+IF+FB)=2AB.
从而
即
下面计算d.
因为DE=FG=HI=d,AB=510,BC=450,CA=425,代入①得
解得d=306.
7.如图2-76所示.△ABC中,AD是∠BAC的平分线.求证:
AB∶AC=BD∶DC.
分析设法通过添辅助线构造相似三角形,这里应注意利用角平分线产生等角的条件.
证过B引BE∥AC,且与AD的延长线交于E.因为AD平分∠BAC,所以∠1=∠2.又因为BE∥AC,所以
∠2=∠3.
从而∠1=∠3,AB=BE.显然
△BDE∽△CDA,
所以BE∶AC=BD∶DC,
所以AB∶AC=BD∶DC.
说明这个例题在解决相似三角形有关问题中,常起重要作用,可当作一个定理使用.类似的还有一个关于三角形外角分三角形的边成比例的命题,这个命题将在练习中出现,请同学们自己试证.
在构造相似三角形的方法中,利用平行线的性质(如内错角相等、同位角相等),将等角“转移”到合适的位置,形成相似三角形是一种常用的方法.
8如图2-77所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:
EF∥AB.
分析利用角平分线分三角形中线段成比例的性质,构造三角形,设法证明△MEF∽△MAB,从而EF∥AB.
证过B引BG∥AC交AE的延长线于G,交AM的延长线于H.因为AE是∠BAC的平分线,所以
∠BAE=∠CAE.
因为BG∥AC,所以
∠CAE=∠G,∠BAE=∠G,
所以BA=BG.
又BD⊥AG,所以△ABG是等腰三角形,所以
∠ABF=∠HBF,
从而
AB∶BH=AF∶FH.
又M是BC边的中点,且BH∥AC,易知ABHC是平行四边形,从而
BH=AC,
所以AB∶AC=AF∶FH.
因为AE是△ABC中∠BAC的平分线,所以
AB∶AC=BE∶EC,
所以AF∶FH=BE∶EC,
即
(AM+MF)∶(AM-MF)=(BM+ME)∶(BM-ME)(这是因为ABHC是平行四边形,所以AM=MH及BM=MC.).由合分比定理,上式变为
AM∶MB=FM∶ME.
在△MEF与△MAB中,∠EMF=∠AMB,所以
△MEF∽△MAB
(两个三角形两条边对应成比例,并且夹角相等,那么这两个三角形相似.).所以
∠ABM=∠FEM,
所以EF∥AB.
9.如图2-78所示.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.
即可,为此若能设法利用长度分别为AB,BC,CA及l=AB+AC这4条线段,构造一对相似三角形,问题可能解决.
注意到,原△ABC中,已含上述4条线段中的三条,因此,不妨以原三角形ABC为基础添加辅助线,构造一个三角形,使它与△ABC相似,期望能解决问题.
证延长AB至D,使BD=AC(此时,AD=AB+AC),又延长BC至E,使AE=AC,连结ED.下面证明,△ADE∽△ABC.
设∠A=α,∠B=2α,∠C=4α,则
∠A+∠B+∠C=7α=180°.
由作图知,∠ACB是等腰三角形ACE的外角,所以
∠ACE=180°-4α=3α,
所以∠CAE=180°-3α-3α=7α-6α=α.
从而
∠EAB=2α=∠EBA,AE=BE.
又由作图
AE=AC,AE=BD,
所以BE=BD,
△BDE是等腰三角形,所以
∠D=∠BED=α=∠CAB,
所以△ABC∽△DAE,
所以
10.如图2-80所示.P,Q分别是Rt△ABC两直角边AB,AC上两点,M为斜边BC的中点,且PM⊥QM.求证:
PB2+QC2=PM2+QM2.
分析与证明若作MD⊥AB于D,ME⊥AC于E,并连接PQ,则
PM2+QM2=PQ2=AP2+AQ2.
于是求证式等价于
PB2+QC2=PA2+QA2,①
等价于
PB2-PA2=QA2-QC2.②
因为M是BC中点,且MD∥AC,ME∥AB,所以D,E分别是AB,AC的中点,即有
AD=BD,AE=CE,
②等价于
(AD+PD)2-(AD-PD)2
=(AE+EQ)2-(AE-EQ)2,③
③等价于
AD·PD=AE·EQ.④
因为ADME是矩形,所以
AD=ME,AE=MD,
故④等价于
ME·PD=MD·EQ.⑤
为此,只要证明△MPD∽△MEQ即可.
下面我们来证明这一点.
事实上,这两个三角形都是直角三角形,因此,只要再证明有一对锐角相等即可.由于ADME为矩形,所以
∠DME=90°=∠PMQ(已知).⑥
在⑥的两边都减去一个公共角∠PME,所得差角相等,即
∠PMD=∠QME.⑦
由⑥,⑦,所以
△MPD∽△MEQ.
由此⑤成立,自⑤逆上,步步均可逆推,从而①成立,则原命题获证.
11.如图2-81所示.△ABC中,E,D是BC边上的两个三等分点,AF=2CF,BF=12厘米.求:
FM,MN,BN的长.
解取AF的中点G,连接DF,EG.由平行线等分线段定理的逆定理知DF∥EG∥BA,所以
△CFD∽△CAB,△MFD∽△MBA.
所以MB=3MF,从而BF=4FM=12,所以
FM=3(厘米).
又在△BDF中,E是BD的中点,且EH∥DF,所以
因为EH∥AB,所以△NEH∽△NAB,从而
显然,H是BF的中点,所以
故所求的三条线段长分别为