铜阳极泥富集贵金属的方法试验.docx

上传人:b****5 文档编号:7246611 上传时间:2023-01-22 格式:DOCX 页数:7 大小:70.93KB
下载 相关 举报
铜阳极泥富集贵金属的方法试验.docx_第1页
第1页 / 共7页
铜阳极泥富集贵金属的方法试验.docx_第2页
第2页 / 共7页
铜阳极泥富集贵金属的方法试验.docx_第3页
第3页 / 共7页
铜阳极泥富集贵金属的方法试验.docx_第4页
第4页 / 共7页
铜阳极泥富集贵金属的方法试验.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

铜阳极泥富集贵金属的方法试验.docx

《铜阳极泥富集贵金属的方法试验.docx》由会员分享,可在线阅读,更多相关《铜阳极泥富集贵金属的方法试验.docx(7页珍藏版)》请在冰豆网上搜索。

铜阳极泥富集贵金属的方法试验.docx

铜阳极泥富集贵金属的方法试验

铜阳极泥富集贵金属的方法试验

一,概述

在铜冶炼工艺过程中,生产出来的冰铜是一种中间产品,冰铜经过阳极炉或转炉冶炼,得到另外的铜冶炼的中间产品粗铜,铜冶炼企业通常处理粗铜的方法是采用电解方法,通过粗铜电解,得到电解铜,既阴极铜,在粗铜电解过程中大量的杂质元素,有价金属,如:

铜、铅、锡、金、银、铂、钯、硒、碲等贵金属和稀有金属,都以铜电解阳极泥的形式沉淀富集,本方法试验是属于有色金属的湿法冶金,试验原料是一种高杂质铜阳极泥预处理富集贵金属的方法。

步骤是向沥干水分后的铜阳极泥中加入硫酸调浆,置于微波反应炉中,进行微波酸浸5~30min,然后进行固液分离,得到微波酸浸渣和微波酸浸液,向微波酸浸渣中加入稀硫酸调浆,在通入氧气压力为0.8~1.2MPa条件下,将微波酸浸浆料置于高压反应釜中进行加压酸浸4~6h,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

本发明的技术方案同时提高了杂质铜阳极泥中的铜、硒、碲和镍浸出回收率,缩短了铜阳极泥的处理时间,提高了铜阳极泥的处理量,使贵金属走向合理且集中,有利于综合回收。

二、方法试验来源

本方法试验是有色金属的湿法冶金,试验原料是广东某铜冶炼企业电解产出的一种高杂质铜阳极泥,粗铜电解精炼过程中,在直流电作用下阳极上的铜和电位较负的贱金属溶解进入溶液,而正电性金属,如金、银和铂族金属它们在阳极上不进行电化学溶解,而以极细的分散状态落入槽底形成铜阳极泥。

铜阳极泥中含有大量的贵金属、铂族金属和稀有元素,是提取稀贵金属的重要原料。

为了有效提取铜阳极泥的稀贵金属,并有利于其他有价元素的回收,需要对阳极泥进行预处理,预处理过程的目的是尽可能脱除铜、硒、碲、镍等金属并使贵金属得到富集,然后再用火法或湿法的方法进行回收金、银和铂族金属。

铜、硒、碲、镍等元素在铜阳极泥中占有极大的比例,而且它的存在对后续的贵金属分离有重大的影响,因此需要对其进行预处理回收,以降低后续工作的试剂耗量和缩短生产周期。

有关高杂质铜阳极泥预处理方法的报道很多,目前国内外采用较多的方法是硫酸盐化焙烧-硫酸浸出法、氧化焙烧-硫酸浸出法、常压空气搅拌硫酸直接浸出法等。

传统的高杂铜阳极泥的预处理工艺,存在原料适应性差,金属分散,生产效率较低等缺点。

预处理过程中有价金属的走向分散,会使得金属的回收难度增加,提高了生产的成本,不利于后续的提取贵金属工艺的顺利进行,直接影响贵金属提取效率与产品的质量。

微波浸出具有反应速度快,浸出率高等特点,但对于氧化物的浸出率较低,使得铜阳极泥的贵贱金属分离不完全;而加压浸出对氧化物的浸出十分有利,氧化物浸出率较高,但对硒、碲等稀散金属的浸出效果不明显。

三、方法试验目的

本方法试验是针对现有技术存在的问题,通过方法试验研究一种高杂质铜阳极泥预处理富集贵金属的方法,目的是通过微波浸出-加压酸浸的联合预处理工艺,同时将高杂质铜阳极泥中的铜、硒、碲和镍浸出回收,缩短了铜阳极泥的处理时间,提高了铜阳极泥的处理量,使贵金属走向合理且集中,有利于综合回收。

四、基本技术方案和步骤

(1)微波酸浸:

向高杂质铜阳极泥中加水进行粗调浆,筛去颗粒直径大于5mm的沙粒类杂质,沥干水分,向沥干水分后的铜阳极泥中加入浓度为100~500g/L的硫酸调浆,得到铜阳极泥浆料,控制铜阳极泥浆料中铜阳极泥的重量浓度在5~30%;将铜阳极泥浆料置于微波反应炉中,通入或加入氧化剂,微波频率为2450MHz,微波加热功率为300~1000w,在微波反应炉中进行酸浸5~30min,然后进行固液分离,得到微波酸浸渣和微波酸浸液,从微波酸浸液中回收铜、硒和碲;

(2)加压酸浸:

向微波酸浸渣中加入浓度为100~500g/L稀硫酸调浆,搅拌0.5-1.5h,得到微波酸浸浆料,控制微波酸浸浆料中微波酸浸渣的重量浓度在10~30%;在通入氧气压力为0.8~1.2MPa条件下,将微波酸浸浆料置于高压反应釜中,浸出反应温度为165~185℃,搅拌速度400~1000r/min,进行加压酸浸4~6h后进行固液分离,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

其中,步骤

(1)中所加入的氧化剂为压缩空气、工业纯氧、富氧空气或H2O2中的一种或两种;采用H2O2时,H2O2的用量为1~5molH2O2/L浆料。

所述的高杂质铜阳极泥中的主要贵金属成分为铜、硒、碲、镍、银和金。

与现有技术相比,

五、方法试验结论

传统浸取方法中矿物加热浸出一定时间后,浸出反应产生的较致密物质会包裹未反应矿核,使浸出反应受阻。

而采用微波强化浸取配有相应添加物的矿石,使矿粒间产生热应力裂纹和孔隙或与添加物反应,不断更新反应界面,将有助于改善浸出效果,由于微波的特性以及微波的热效应和非热效应,使得微波加热相对于传统加热具有很多无可比拟的优点,

微波加热是从物质的内部加热,具有自动平衡的性能,因而加热均匀;微波能够渗入到物料内部,对被加热物料直接发热,而不是依靠物料本身的热传导,因而克服了常规加热方法加热慢的缺点,使浸出时间大幅度降低。

以硫酸和双氧水为介质,对铜阳极泥进行微波酸浸实验,该法具有反应速度快,浸出率高等特点。

铜阳极泥的加压浸出是在密闭的反应容器内进行,加压可以使反应温度提高到溶液的沸点以上,使气体介质在浸出过程中具有较高的分压,让反应能在更有效的条件下进行,使浸出过程得到强化。

其次,在加压条件下反应温度允许升高,对反应的热力学和动力学都有利。

提高浸出温度,加快浸出速度,从而大大缩短浸出时间。

本方法试验对高杂铜阳极泥的新预处理分离工艺,可使铜阳极泥中大部分的铜、硒、碲、镍浸出,铜、硒、碲、镍的浸出率分别达到96~99%、93~98%、94~99%、90~94%,并得到含金银1.5%、14%左右的富集渣。

经过微波-加压酸浸后的浸出液和浸出渣容易处理,有利于综合回收其中的有价值金属,使得稀贵金属后续的提纯工艺得以大幅度的简化,稀贵金属回收率高,生产成本降低,劳动强度低,处理时间短,有利于节能减排和绿色生产。

六、方法试验特点

1.高杂质铜阳极泥预处理富集贵金属的方法试验,其特点在于按照以下步骤进行:

(1)微波酸浸:

向高杂质铜阳极泥中加水进行粗调浆,筛去颗粒直径大于5mm的沙粒类杂质,沥干水分,向沥干水分后的铜阳极泥中加入浓度为100~500g/L的硫酸调浆,得到铜阳极泥浆料,控制铜阳极泥浆料中铜阳极泥的重量浓度在5~30%,将铜阳极泥浆料置于微波反应炉中,通入或加入氧化剂,微波频率为2450MHz,微波加热功率为300~1000w,在微波反应炉中进行酸浸5~30min,然后进行固液分离,得到微波酸浸渣和微波酸浸液,从微波酸浸液中回收铜、硒和碲;

(2)加压酸浸:

向微波酸浸渣中加入浓度为100~500g/L稀硫酸调浆,搅拌0.5-1.5h,得到微波酸浸浆料,控制微波酸浸浆料中微波酸浸渣的重量浓度在10~30%;在通入氧气压力为0.8~1.2MPa条件下,将微波酸浸浆料置于高压反应釜中,浸出反应温度为165~185℃,搅拌速度400~1000r/min,进行加压酸浸4~6h后进行固液分离,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

2.高杂质铜阳极泥预处理富集贵金属的方法试验,其特点在于步骤

(1)中所加入的氧化剂为压缩空气、工业纯氧、富氧空气或H2O2中的一种或两种;采用H2O2时,H2O2的用量为1~5molH2O2/L浆料。

3.高杂质铜阳极泥预处理富集贵金属的方法试验,其特点在于高杂质铜阳极泥中的主要贵金属成分为铜、硒、碲、镍、银和金。

一种高杂质铜阳极泥预处理富集贵金属的方法

七、附图说明

图1是本方法试验的工艺流程图。

八、方法试验

下面结合试验例对本方法试验的技术方案做进一步说明。

方法试验例中所用的高杂质铜阳极泥由广东铜冶炼公司提供,所用铜阳极泥的成分如表1:

表1阳极泥成分

元素AuAgCuNiSeTe重量

含量422.6g·t-13.62%14.68%16.88%3.13%0.669%

试验1

(1)微波酸浸:

向高杂质铜阳极泥中加水进行粗调浆,筛去颗粒直径大于5mm的沙粒类

杂质,沥干水分,向沥干水分后的铜阳极泥中加入浓度为500g/L的硫酸调浆,得到铜阳极泥浆料,控制铜阳极泥浆料中铜阳极泥的重量浓度在30%;将铜阳极泥浆料置于微波反应炉中,加入氧化剂H2O2,H2O2的用量为2.5molH2O2/L浆料,微波频率为2450MHz,微波加热功率为500w,在微波反应炉中进行酸浸20min,然后进行固液分离,得到微波酸浸渣和微波酸浸液,从微波酸浸液中回收铜、硒和碲;

(2)加压酸浸:

向微波酸浸渣中加入浓度为300g/L稀硫酸调浆,搅拌0.5h,得到微波酸浸浆料,控制微波酸浸浆料中微波酸浸渣的重量浓度在30%;在通入氧气压力为1.2MPa条件下,将微波酸浸浆料置于高压反应釜中,浸出反应温度

为185℃,搅拌速度750r/min,进行加压酸浸4h后进行固液分离,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

高杂质铜阳极泥经过以上两个步骤后,经化学分析结果得出:

铜浸出率为98%、硒浸出率为97%、碲浸出率为97%、镍的浸出率为94%,银的浸出率为2.4%,加压酸浸渣中金银

的品位分别为1.6%、12.5%。

试验2

(1)微波酸浸:

向高杂质铜阳极泥中加水进行粗调浆,筛去颗粒直径大于5mm的沙粒类杂质,沥干水分,向沥干水分后的铜阳极泥中加入浓度为400g/L的硫酸调浆,得到铜阳极泥浆料,控制铜阳极泥浆料中铜阳极泥的重量浓度在20%;

将铜阳极泥浆料置于微波反应炉中,加入氧化剂H2O2,H2O2的用量为5molH2O2/L浆料,微波频率为2450MHz,微波加热功率为1000w,在微波反应炉中进行酸浸30min,然后进行固液分离,得到微波酸浸渣和微波酸浸液,从微波酸浸液中回收铜、硒和碲;

(2)加压酸浸:

向微波酸浸渣中加入浓度为500g/L稀硫酸调浆,搅拌1.0h,得到微波酸浸浆料,控制微波酸浸浆料中微波酸浸渣的重量浓度在20%;在通入氧气压力为1.0MPa条件下,将微波酸浸浆料置于高压反应釜中,浸出反应温度

为175℃,搅拌速度900r/min,进行加压酸浸6h后进行固液分离,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

铜阳极泥经过以上两个步骤后,经化学分析结果得出:

铜浸出率为97%、硒浸出率

为96%、碲浸出率为96%、镍的浸出率为93%,银的浸出率为2%,加压酸浸渣中金银的品位分别为1.5%、13%。

试验3

(1)微波酸浸:

向高杂质铜阳极泥中加水进行粗调浆,筛去颗粒直径大于5mm的沙粒类杂质,沥干水分,向沥干水分后的铜阳极泥中加入浓度为250g/L的硫酸调浆,得到铜阳极泥浆料,控制铜阳极泥浆料中铜阳极泥的重量浓度在10%;

将铜阳极泥浆料置于微波反应炉中,加入氧化剂H2O2,H2O2的用量为3molH2O2/L浆料,微波频率为2450MHz,微波加热功率为300w,在微波反应炉中进行酸浸30min,然后进行固液分离,得到微波酸浸渣和微波酸浸液,从微波酸浸液中回收铜、硒和碲;

(2)加压酸浸:

向微波酸浸渣中加入浓度为200g/L稀硫酸调浆,搅拌1.5h,得到微波酸浸浆料,控制微波酸浸浆料中微波酸浸渣的重量浓度在10%;在通入氧气压力为0.8MPa条件下,将微波酸浸浆料置于高压反应釜中,浸出反应温度

为165℃,搅拌速度600r/min,进行加压酸浸5h后进行固液分离,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

铜阳极泥经过以上两个步骤后,经化学分析结果得出:

铜浸出率为97%、硒浸出率

为95%、碲浸出率为95%、镍的浸出率为92%,银的浸出率为1.3%,加压酸浸渣中金银的品位分别为1.3%、13.4%。

试验4

(1)微波酸浸:

向高杂质铜阳极泥中加水进行粗调浆,筛去颗粒直径大于5mm的沙粒类杂质,沥干水分,向沥干水分后的铜阳极泥中加入浓度为350g/L的硫酸调浆,得到铜阳极泥浆料,控制铜阳极泥浆料中铜阳极泥的重量浓度在15%;

将铜阳极泥浆料置于微波反应炉中,通入富氧空气,微波频率为2450MHz,微波加热功率为650w,在微波反应炉中进行酸浸25min,然后进行固液分离,得到微波酸浸渣和微波酸浸液,从微波酸浸液中回收铜、硒和碲;

(2)加压酸浸:

向微波酸浸渣中加入浓度为250g/L稀硫酸调浆,搅拌1.5h,得到微波酸浸浆料,控制微波酸浸浆料中微波酸浸渣的重量浓度在10%;在通入氧气压力为1.1MPa条件下,将微波酸浸浆料置于高压反应釜中,浸出反应温度

为170℃,搅拌速度800r/min,进行加压酸浸5.5h后进行固液分离,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

铜阳极泥经过以上两个步骤后分析结果得出:

铜浸出率为99%、硒浸出率为96%、

碲浸出率为97%、镍的浸出率为93%,银的浸出率为1.7%,加压酸浸渣中金银的品位分别为1.6%、12.8%。

试验5

(1)微波酸浸:

向高杂质铜阳极泥中加水进行粗调浆,筛去颗粒直径大于5mm的沙粒类杂质,沥干水分,向沥干水分后的铜阳极泥中加入浓度为100g/L的硫酸调浆,得到铜阳极泥浆料,控制铜阳极泥浆料中铜阳极泥的重量浓度在5%;

将铜阳极泥浆料置于微波反应炉中,加入氧化剂H2O2,H2O2的用量为1molH2O2/L浆料,微波频率为2450MHz,微波加热功率为650w,在微波反应炉中进行酸浸5min,然后进行固液分离,得到微波酸浸渣和微波酸浸液,从微波酸浸液中回收铜、硒和碲;

(2)加压酸浸:

向微波酸浸渣中加入浓度为250g/L稀硫酸调浆,搅拌1.5h,得到微波酸浸浆料,控制微波酸浸浆料中微波酸浸渣的重量浓度在10%;在通入氧气压力为0.9MPa条件下,将微波酸浸浆料置于高压反应釜中,浸出反应温度

为175℃,搅拌速度400r/min,进行加压酸浸4.5h后进行固液分离,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

铜阳极泥经过以上两个步骤后,经化学分析结果得出:

铜浸出率为96%、硒浸出率

为93%、碲浸出率为94%、镍的浸出率为90%,银的浸出率为1.4%,加压酸浸渣中金银的品位分别为1.5%、13.8%。

试验6

(1)微波酸浸:

向高杂质铜阳极泥中加水进行粗调浆,筛去颗粒直径大于5mm的沙粒类杂质,沥干水分,向沥干水分后的铜阳极泥中加入浓度为150g/L的硫酸调浆,得到铜阳极泥浆料,控制铜阳极泥浆料中铜阳极泥的重量浓度在15%;

将铜阳极泥浆料置于微波反应炉中,通入压缩空气和工业纯氧,微波频率为2450MHz,微波加热功率为750w,在微波反应炉中进行酸浸5min,然后进行固液分离,得到微波酸浸

渣和微波酸浸液,从微波酸浸液中回收铜、硒和碲;

(2)加压酸浸:

向微波酸浸渣中加入浓度为100g/L稀硫酸调浆,搅拌1.5h,得到微波酸浸浆料,控制微波酸浸浆料中微波酸浸渣的重量浓度在10%;在通入氧气压力为1.2MPa条件下,将微波酸浸浆料置于高压反应釜中,浸出反应温度

为180℃,搅拌速度1000r/min,进行加压酸浸6h后进行固液分离,得到加压酸浸渣和加压酸浸液,从加压酸浸渣中回收金和银,从加压酸浸液中回收镍。

铜阳极泥经过以上两个步骤后,经化学分析结果得出:

铜浸出率为97%、硒浸出率

为93%、碲浸出率为95%、镍的浸出率为91%,银的浸出率为1.6%,加压酸浸渣中金银的品位分别为1.7%、13.3%。

 

附图说明:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1