机械类文献翻译包络法的资产负债.docx

上传人:b****6 文档编号:7154702 上传时间:2023-01-21 格式:DOCX 页数:14 大小:177.05KB
下载 相关 举报
机械类文献翻译包络法的资产负债.docx_第1页
第1页 / 共14页
机械类文献翻译包络法的资产负债.docx_第2页
第2页 / 共14页
机械类文献翻译包络法的资产负债.docx_第3页
第3页 / 共14页
机械类文献翻译包络法的资产负债.docx_第4页
第4页 / 共14页
机械类文献翻译包络法的资产负债.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

机械类文献翻译包络法的资产负债.docx

《机械类文献翻译包络法的资产负债.docx》由会员分享,可在线阅读,更多相关《机械类文献翻译包络法的资产负债.docx(14页珍藏版)》请在冰豆网上搜索。

机械类文献翻译包络法的资产负债.docx

机械类文献翻译包络法的资产负债

英文原文

 

A

EnvelopeMethodofGearing

 

FollowingStosic1998,screwcompressorrotorsaretreatedhereashelicalgearswithnonparallelandnonintersecting,orcrossedaxesaspresentedatFig.A.1.x01,y01andx02,y02arethepointcoordinatesattheendrotorsectioninthecoordinatesystemsfixedtothemainandgaterotors,asispresentedinFig.1.3.ΣistherotationanglearoundtheXaxes.Rotationoftherotorshaftisthenaturalrotormovementinitsbearings.Whilethemainrotorrotatesthroughangleθ,thegaterotorrotatesthroughangleτ=r1w/r2wθ=z2/z1θ,whererwandzarethepitchcircleradiiandnumberofrotorlobesrespectively.Inadditionwedefineexternalandinternalrotorradii:

r1e=r1w+r1andr1i=r1w−r0.ThedistancebetweentherotoraxesisC=r1w+r2w.pistherotorleadgivenforunitrotorrotationangle.Indices1and2relatetothemainandgaterotorrespectively.

Fig.A.1.Coordinatesystemofhelicalgearswithnonparallelandnonintersecting

Axes

Theprocedurestartswithagiven,orgeneratingsurfacer1(t,θ)forwhichameshing,orgeneratedsurfaceistobedetermined.Afamilyofsuchgener-atedsurfacesisgiveninparametricformby:

r2(t,θ,τ),wheretisaprofileparameterwhileθandτaremotionparameters.

r1=r1(t,θ)=[x1,y1,z1]

=x01cosθ-y01sinθ,x01sinθ+y01cosθ,p1θ](A,.1)

=

(A.2)

(A.3)

(A.4)

(A.5)

Theenvelopeequation,whichdeterminesmeshingbetweenthesurfacesr1andr2:

(A.6)

togetherwithequationsforthesesurfaces,completesasystemofequations.Ifageneratingsurface1isdefinedbytheparametert,theenvelopemaybeusedtocalculateanotherparameterθ,nowafunctionoft,asameshingconditiontodefineageneratedsurface2,nowthefunctionofbothtandθ.Thecrossproductintheenvelopeequationrepresentsasurfacenormaland∂r2∂τistherelative,slidingvelocityoftwosinglepointsonthesurfaces1and2whichtogetherformthecommontangentialpointofcontactofthesetwosurfaces.Sincetheequalitytozeroofascalartripleproductisaninvariantpropertyundertheappliedcoordinatesystemandsincetherelativevelocitymaybeconcurrentlyrepresentedinbothcoordinatesystems,aconvenientformofthemeshingconditionisdefinedas:

(A.7)

Insertionofpreviousexpressionsintotheenvelopeconditiongives:

(A.8)

Thisisappliedheretoderivetheconditionofmeshingactionforcrossedhelicalgearsofuniformleadwithnonparallelandnonintersectingaxes.Themethodconstitutesageargenerationprocedurewhichisgenerallyapplicable.Itcanbeusedforsynthesispurposesofscrewcompressorrotors,whichareelectivelyhelicalgearswithparallelaxes.Formedtoolsforrotormanufacturingarecrossedhelicalgearsonnonparallelandnonintersectingaxeswithauniformlead,asinthecaseofhobbing,orwithnoleadasinformedmillingandgrinding.Templatesforrotorinspectionarethesameasplanarrotorhobs.Inallthesecasesthetoolaxesdonotintersecttherotoraxes.

Accordinglythenotespresenttheapplicationoftheenvelopemethodtoproduceameshingconditionforcrossedhelicalgears.Thescrewrotorgearingisthengivenasanelementaryexampleofitsusewhileaprocedureforformingahobbingtoolisgivenasacomplexcase.

TheshaftangleΣ,centredistanceC,andunitleadsoftwocrossedhelicalgears,p1andp2arenotinterdependent.Themeshingofcrossedhelicalgearsisstillpreserved:

bothgearrackshavethesamenormalcrosssectionprofile,andtherackhelixanglesarerelatedtotheshaftangleasΣ=ψr1+ψr2.Thisisachievedbytheimplicitshiftofthegearracksinthexdirectionforcingthemtoadjustaccordinglytotheappropriaterackhelixangles.Thiscertainlyincludesspecialcases,likethatofgearswhichmaybeorientatedsothattheshaftangleisequaltothesumofthegearhelixangles:

Σ=ψ1+ψ2.Furthermoreacentredistancemaybeequaltothesumofthegearpitchradii:

C=r1+r2.

Pairsofcrossedhelicalgearsmaybewitheitherbothhelixanglesofthesamesignoreachofoppositesign,leftorrighthanded,dependingonthecombinationoftheirleadandshaftangleΣ.

Themeshingconditioncanbesolvedonlybynumericalmethods.Forthegivenparametert,thecoordinatesx01andy01andtheirderivatives∂x01∂tand∂y01∂tareknown.Aguessedvalueofparameterθisthenusedtocalculatex1,y1,∂x1∂tand∂y1∂t.Arevisedvalueofθisthenderivedandtheprocedurerepeateduntilthedifferencebetweentwoconsecutivevaluesbecomessufficientlysmall.

Forgiventransversecoordinatesandderivativesofgear1profile,θcanbeusedtocalculatethex1,y1,andz1coordinatesofitshelicoidsurfaces.Thegear2helicoidsurfacesmaythenbecalculated.Coordinatez2canthenbeusedtocalculateτandfinally,itstransverseprofilepointcoordinatesx2,y2canbeobtained.

Anumberofcasescanbeidentifiedfromthisanalysis.

(i)WhenΣ=0,theequationmeetsthemeshingconditionofscrewmachinerotorsandalsohelicalgearswithparallelaxes.Forsuchacase,thegearhelixangleshavethesamevalue,butoppositesignandthegearratioi=p2/p1isnegative.Thesameequationmayalsobeappliedforthegen-erationofarackformedfromgears.Additionallyitdescribestheformedplanarhob,frontmillingtoolandthetemplatecontrolinstrument.122AEnvelopeMethodofGearing

(ii)Ifadiscformedmillingorgrindingtoolisconsidered,itissuffcienttoplacep2=0.Thisisasingularcasewhentoolfreerotationdoesnotaffectthemeshingprocess.Therefore,areversetransformationcannotbeobtaineddirectly.

(iii)Thefullscopeofthemeshingconditionisrequiredforthegenerationoftheprofileofaformedhobbingtool.Thisisthereforethemostcompli-catedtypeofgearwhichcanbegeneratedfromit.

 

B

ReynoldsTransportTheorem

 

FollowingHanjalic,1983,ReynoldsTransportTheoremdefinesachangeofvariableφinacontrolvolumeVlimitedbyareaAofwhichvectorthelocalnormalisdAandwhichtravelsatlocalspeedv.Thiscontrolvolumemay,butneednotnecessarilycoincidewithanengineeringorphysicalmaterialsystem.Therateofchangeofvariableφintimewithinthevolumeis:

(B.1)

Therefore,itmaybeconcludedthatthechangeofvariableφinthevolumeViscausedby:

–changeofthespecificvariable

intimewithinthevolumebecauseofsources(andsinks)inthevolume,

dVwhichiscalledalocalchangeand

–movementofthecontrolvolumewhichtakesanewspacewithvariable

initandleavesitsoldspace,causingachangeintimeof

forρ

v.dAandwhichiscalledconvectivechange

Thefirstcontributionmayberepresentedbyavolumeintegral:

.

(B.2)

whilethesecondcontributionmayberepresentedbyasurfaceintegral:

(B.3)

Therefore:

(B.4)

whichisamathematicalrepresentationofReynoldsTransportTheorem.

AppliedtoamaterialsystemcontainedwithinthecontrolvolumeVmwhichhassurfaceAmandvelocityvwhichisidenticaltothefluidvelocityw,ReynoldsTransportTheoremreads:

(B.5)

IfthatcontrolvolumeischosenatoneinstanttocoincidewiththecontrolvolumeV,thevolumeintegralsareidenticalforVandVmandthesurfaceintegralsareidenticalforAandAm,however,thetimederivativesoftheseintegralsaredifferent,becausethecontrolvolumeswillnotcoincideinthenexttimeinterval.However,thereisatermwhichisidenticalforthebothtimesintervals:

(B.6)

therefore,

(B.7)

or:

(B.8)

Ifthecontrolvolumeisfixedinthecoordinatesystem,i.e.ifitdoesnotmove,v=0andconsequently:

(B.9)

therefore:

(B.10)

FinallyapplicationofGausstheoremleadstothecommonform:

(B.11)

Asstatedbefore,achangeofvariableφiscausedbythesourcesqwithinthevolumeVandinfluencesoutsidethevolume.Theseeffectsmaybeproportionaltothesystemmassorvolumeortheymayactatthesystemsurface.

Thefirsteffectisgivenbyavolumeintegralandthesecondeffectisgivenbyasurfaceintegral.

(B.12)

qcanbescalar,vectorortensor.

Thecombinationofthetwolastequationsgives:

Or:

(B.13)

Omittingintegralsignsgives:

(B.14)

Thisisthewellknownconservationlawformofvariable

.Sincefor

=1,thisbecomesthecontinuityequation:

finallyitis:

Or:

(B.15)

isthematerialorsubstantialderivativeofvariable

.Thisequationisveryconvenientforthederivationofparticularconservationlaws.Aspreviouslymentioned

=1leadstothecontinuityequation,

=utothemomentumequation,

=e,whereeisspecificinternalenergy,leadstotheenergyequation,

=s,totheentropyequationandsoon.

Ifthesurfaces,wherethefluidcarryingvariableΦentersorleavesthecontrolvolume,canbeidentified,aconvectivechangemayconvenientlybewritten:

(B.16)

wheretheoverscoresindicatethevariableaverageatentry/exitsurfacesections.Thisleadstothemacroscopicformoftheconservationlaw:

(B.17)

whichstatesinwords:

(rateofchangeofΦ)=(inflowΦ)−(outflowΦ)+(sourceofΦ)

 

中文译文

A

包络法的资产负债

螺杆压缩机转子Stosic1998年之后,被视为非平行不相交的螺旋齿轮,或在图的交叉轴。

A.1。

X01,y01和x02之前,y02是该点的坐标的坐标系统中的固定的主转子和闸转子的端部转子段,如示于图。

1.3。

Σ是绕X轴的旋转角度。

的转子轴的旋转,在其轴承是天然的转子运动。

虽然主旋翼旋转通过角度θ,闸转子的旋转通过角度τ=r1w/rwθ=z2/z1θ,其中rw和z是分别的转子叶片的节距圆的半径和数量。

此外,我们定义外部和内部的转子半径:

r1e=r1w+r1和r1i=r1W–r0。

转子轴之间的距离是C=r1W+r2W。

p是在给定的单元转子旋转角的转子引线。

标1和2分别涉及的主要和闸转子。

 

图。

A.1。

坐标系与非平行交错轴斜齿轮

 

与一个给定的,或产生表面R1(T,θ)的啮合,或产生的表面以确定,该程序开始。

一个集合中仍将产生表面参数形式:

R2(T,θ,τ),其中t是一个配置参数,θ和τ是运动参数。

包络面r1和r2之间的啮合方程,它决定:

r1=r1(t,θ)=[x1,y1,z1]

=x01cosθ-y01sinθ,x01sinθ+y01cosθ,p1θ](A,.1)

=

(A.2)

(A.3)

(A.4)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1