MPLS多协议标签交换.docx

上传人:b****6 文档编号:7068592 上传时间:2023-01-16 格式:DOCX 页数:19 大小:102.09KB
下载 相关 举报
MPLS多协议标签交换.docx_第1页
第1页 / 共19页
MPLS多协议标签交换.docx_第2页
第2页 / 共19页
MPLS多协议标签交换.docx_第3页
第3页 / 共19页
MPLS多协议标签交换.docx_第4页
第4页 / 共19页
MPLS多协议标签交换.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

MPLS多协议标签交换.docx

《MPLS多协议标签交换.docx》由会员分享,可在线阅读,更多相关《MPLS多协议标签交换.docx(19页珍藏版)》请在冰豆网上搜索。

MPLS多协议标签交换.docx

MPLS多协议标签交换

MPLS(Multi-ProtocolLabelSwitching)即多协议标签交换,是一种可提供高性价比和多业务能力的交换技术,它解决了传统IP分组交换的局限性,在业界受到了广泛的重视,并在中国网通、中国铁通全国骨干网等网络建设中得到了实践部署。

采用MPLS技术可以提供灵活的流量工程、虚拟专网等业务,同时,MPLS也是能够完成涉及多层网络集成控制与管理的技术。

纠错编辑摘要

目录

1MPLS概述

2基于MPLS的VPN技术

3MPLS技术的实际应用

4MPLS发展前景

5MPLS技术在城域网中的应用

1MPLS概述

2基于MPLS的VPN技术

3MPLS技术的实际应用

4MPLS发展前景

5MPLS技术在城域网中的应用

6参考资料

MPLS

MPLS(Multi-ProtocolLabelSwitching)即多协议标签交换,是一种可提供高性价比和多业务能力的交换技术,它解决了传统IP分组交换的局限性,在业界受到了广泛的重视,并在中国网通、中国铁通全国骨干网等网络建设中得到了实践部署。

采用MPLS技术可以提供灵活的流量工程、虚拟专网等业务,同时,MPLS也是能够完成涉及多层网络集成控制与管理的技术。

MPLS-MPLS概述

1.1、MPLS的基本原理

MPLS是一种第三层路由结合第二层属性的交换技术,引入了基于标签的机制,它把路由选择和数据转发分开,由标签来规定一个分组通过网络的路径。

MPLS网络由核心部分的标签交换路由器(LSR)、边缘部分的标签边缘路由器(LER)组成。

LSR的作用可以看作是ATM交换机与传统路由器的结合,由控制单元和交换单元组成;LER的作用是分析IP包头,用于决定相应的传送级别和标签交换路径(LSP)。

标签交换的工作过程可概括为以下3个步骤:

(1)由LDP(标签分布协议)和传统路由协议(OSPF、IS-IS等)一起,在LSR中建立路由表和标签映射表;

(2)LER接收IP包,完成第三层功能,并给IP包加上标签;在MPLS出口的LER上,将分组中的标签去掉后继续进行转发;

(3)LSR对分组不再进行任何第三层处理,只是依据分组上的标签通过交换单元对其进行转发。

整个操作过程如图1:

图1

IETF标准文档中定义的MPLS包头是插入在传统的第二层数据链路层包头和第三层IP包头之间的一个32位的字段,如图2所示:

图2

Label字段:

20位,标签字段。

EXP:

3位,实验字段。

S字段:

1位,堆栈(Stack)字段。

TTL字段:

8位,生存时间字段。

1.2MPLS术语

1)标记交换路由器(LSR):

根据预算交换表交换标记包的核心设备。

这个设备可以是交换机也可以是路由器。

2)标记(LABLE):

一个报头,LSR用它来传送包。

报头格式取决于网络特性。

在路由网络中,标记是一个分离的,32比特报头。

在ATM网络中,此标记被置于虚通路标识器(VPI)/虚通道标识器(VCI)的信头中。

在核心部分,LSRs只读取标记,而不是网络层包头。

MPLS可伸缩性的一个关键是标记只在交换信息的两个设备之间有意义。

标记的长度是固定的,用来标识特定的FEC标识符。

通常情况下,根据网络层的目的地址将数据包分配给某个FEC。

如果Ru和Rd都是LSR(labelswitchingrouter),假设数据包由Ru发送到Rd,Ru将标记绑订L到特定的FECf。

在这样的情况下标记L作为Ru的“出标记”代表FECf,同时标记L作为Rd的“入标记”代表FECf。

3)边界标记交换路由器(EdgeLSR):

边界设备完成初始的包处理和分类,并且应用第一个标记。

这个设备可以是一个路由器,也可以是一个有路由功能的交换机。

4)标记交换路径(LSP):

路径是由在两个端点的所有被指定的标记所决定。

一个LSP可以是动态的,也可以是静态的。

动态LSP是利用路由信息自动提供的;静态LSP是被明确指定的。

  

5)标记虚电路(LVC):

一个“一跳下一跳”的连接在ATM传输层被建立用以实现一个LSP。

不同于ATM虚电路的是,LVC不是端到端的被执行,也不浪费带宽。

  

6)标记分配协议(LDP):

即通信标记和他们在LSRs间的意义。

它在边界指定标记,核心设备根据路由协议(如:

OSPF,IS-IS,EIGRPRIPorBGP)建立LSPs。

  

首先分隔实体将数据包映射到FEC“forwardingequivalenceclasses"然后将每一个FEC映射到下一跳。

  

所以根据有关的前面步骤,不同的数据包映射到相同的FEC是不被区分的。

所有的数据包将属于特定的FEC,并且根据路径传送到特定的节点上。

  

传统的IpForwarding中,一般的路由器会如果两个数据包具有相同的addressprefix,认为它们属于同一个FEC。

在传统的网络中,当数据包经过网络,每一跳后路由器都会重新检查数据包映射到特定的FEC的情况。

  

而在MPLS网络重,特定的数据包分配给FEC只进行一次。

映射到FEC的数据包都被分配有一个固定长度数值的label.当数据传送到下一跳,这个固定长度的label将跟随到数据包一起发送.

  

因而在频繁的数据传送过程中,MPLS网络中的设备将不会分析数据包的layer信息.而是根据包上的标记决定下一跳.当数据包到达下一跳时,旧的标记将被新的标记所取代.

  

在MPLS前传的算法中,一旦数据包进入网络后,入路由器将数据包分配给特定的FEC。

一切决定数据传送只是决定于标识。

例如;不同数据包到达不同路由器端口可能会被分配到不FEC。

在传统的网络的数据前传中,决定数据前传信息只能是数据包头信息。

一个数据进入网络后特定的路由器可以被标识为不同的标记,并不需要同样的数据包进入到不同的路由器。

由此前传是可以由入路由器轻松设置。

在传统的网络中的前方向传不能由入路由器决定。

  

可以想象在网络中,决定到数据包到FEC的映射变得越来越复杂。

对于路由器没有任何影响只是前传已经标识的数据包。

  

有时,我们希望数据根据特定的路由传递,而不是根据特定的动态路由算法决定数据如何传递。

要完成此项功能,既需要数据包携带路由信息(“源路由”)。

在MPLS网络中,标记可以被用来代表路由,所以在并不需要数据包携带特定的路由信息。

  

一些路由器分析数据包的报头信息,并不只决定数据包的下一跳,而是根据数据包所携带“优先级”或者“服务类别”。

它们可以应用于不同的服务质量。

  

在mpls网络中并不完全允许优先级和服务质量。

在这种情况里,可以由将标记和FEC结合表示数据优先级和服务质量。

  

MPLS代表多协议标记交换,多协议因为他可以应用于多协议中。

  

标记

  

标记是固定长度的标识用来指定FEC.标记。

标记通常用来表示分配给数据包的FEC.

  

通常的情况下,将数据包分配给特定FEC是基于网络层的地址。

然而,标记却不将地址进行编码。

如果Ru和Rd是lsr,并且要将数据包由Ru发送到Rd。

若数据包是FECF的成员,Ru便将标记L标识数据包。

在标识数据包的前提条件是数据包是FECF的成员。

由此Ru和Rd完成了标记L和FEC绑订并且将数据将Ru发送到Rd.我们称标记L是Ru的出标记用来代表FECF,标记L是Rd的入标记用来代表FECF.

1.3、MPLS信令方式

目前MPLS实现信令的方式可分为两类,一类是LDP/CR-LDP(LabelDispatchProtocol,ConstrainbasedRoutingLabelDispatchProtocol),源于ATM网络的思想。

CR-LDP和LDP是同一个协议,CR-LDP是LDP的扩展,它使用与LDP相同的消息和机制,如对等发现、会话建立和保持、标签发布和错误处理。

另外一类是RSVP,它基于传统的IP路由协议。

RSVP和LDP/CR-LDP是两种不同的协议,它们在协议特性上存在不同,有不同的消息集和信令处理规程。

从协议可靠性上来看,LDP/CR-LDP是基于TCP的,当发生传输丢包时,利用TCP协议提供简单的错误指示,实现快速响应和恢复。

而RSVP只是传送IP包。

由于缺乏可靠的传输机制,RSVP无法保证快速的失败通知。

从网络可扩展性上看,LDP较RSVP更有优势,一般电信级网络中尤其是ATM网络中,应采用MPLS/LDP。

99vU-T倾向于在骨干网中采用CR-LDP。

目前所有支持MPLS功能的路由设置都同时支持CR-LDP和RSVP两种MPLS的信令协议。

1.4、MPLS的网络构成

MPLS网络由标签边缘路由器(LER)和标签交换路由器(LSR)组成。

在LSR内,MPLS控制模块以IP功能为中心,转发模块基于标签交换算法,并通过标签分配协议(LDP)在节点间完成标签信息以及相关信令的发送。

值得注意的是,LDP信令以及标签绑定信息只在MPLS相邻节点间传递。

LSR之间或ISR与LER之间依然需要运行标准的路由协议,并由此获得拓扑信息。

通过这些信息LSR可以明确选取报文的下一跳并可最终建立特定的标签交换路径(LSP)。

MPLS使用控制驱动模型,即基于拓扑驱动方式对用于建立LSP的标签绑定信息的分配及转发进行初始化。

LSP属于单向传输路径,因而全双工业务需要两条LSP,每条LSP负责一个方向上的业务。

1.5、MPLS的核心技术LDP

MPLS通过简单的核心机制来提供丰富的标签分配及相关处理功能。

构成MPLS协议框架的主要元素有标签分配协议(LDP),标签映射表(LIB)和转发信息库(FIB),其中LIB和FIB分别为存储标签绑定信息和相应的标签转发信息的数据库。

为了能够在MPLS域内明确定义、分配标签,同时使用网络内各元素充分理解其标签含义,LDP提供一套标准的信令机制用于有效地实现标签的分配与转发功能。

LDP基于原有的网络层路由协议构建标签信息库,并根据网络拓扑结构,在MPLS域边缘节点(即入节点与出节点)之间建立LSP。

LDP信令位于TCP/UDP之上,它通过TCP层保证信令消息可靠传输,同时基于UDP传送发现消息。

LDP信令传输使用的TCP和UDP知名端口号均为646。

相邻的LSR之间必须建立一条非MPLS连接链路作为信令通道,用于传送LDP信令报文。

1.6、MPLS的主要技术特点

(1)流量工程

传统IP网络一旦为一个IP包选择了一条路径,则不管这条链路是否拥塞,IP包都会沿着这条路径传送,这样就会造成整个网络在某处资源过度利用,而另外一些地方网络资源闲置不用,MPLS可以控制IP包在网络中所走过的路径,这样可以避免IP包在网络中的盲目行为,避免业务流向已经拥塞的节点,实现网络资源的合理利用。

(2)负载均衡

MPLS可以使用两条和多条LSP来承载同一个用户的IP业务流,合理地将用户业务流分摊在这些LSP之间。

(3)路径备份

可以配置两条LSP,一条处于激活状态,另外一条处于备份状态,一旦主LSP出现故障,业务立刻导向备份的LSP,直到主LSP从故障中恢复,业务再从备份的LSP切回到主LSP。

(4)故障恢复

当一条已经建立的LSP在某一点出现故障时,故障点的MPLS会向上游发送Notification消息,通知上游LER重新建立一条LSP来替代这条出现故障的LSP。

上游LER就会重新发出Request消息建立另外一条LSP来保证用户业务的连续性。

(5)路径优先级及碰撞

在网络资源匮乏的时候,应保证优先级高的业务优先使用网络资源。

MPLS通过设置LSP的建立优先级和保持优先级来实现的。

每条LSP有n个建立优先级和m个保持优先级。

优先级高的LSP先建立,并且如果某条LSP建立时,网络资源匮乏,而它的建立优先级又高于另外一条已经建立的LSP的保持优先级,那么它可以将已经建立的那条LSP断开,让出网络资源供它使用。

1.7、MPLSQoS

有两种方法用以MPLS流中指示服务类别。

一种是IPPrecedence,可以指出8种服务类别。

它被拷贝到MPLS头中的CoS字段,典型应用是在核心路由器。

在另一种方式中,MPLS可用不同组的标签指定服务类别,交换机可自动获知流量需要按优先级排队。

目前,MPLS支持最多8种服务类别,编码与IPPrecedence相同。

这一数量不久将增加,原因是标签的数量多于IP前导的服务类别。

采用标签分类后实际的服务类别数量是无限的。

1.8MPLS的优点

MPLS的最大的优点便是它是标准化的交换技术。

目前已被众多的网络厂商所接收。

现在MPLS已经被众多的厂商看作下一代的网络交换技术,目前Bay和Fore等产商已经推出了基于MPLS网络产品。

MPLS较传统的网络产品有以下的优点:

  

a)所支持的Explicit路由技术

Explicit路由技术是MPLS网络技术的关键部分。

Explicit路由技较传统的IP的Source路由技术有更高的效率。

同时Explicit路由技术还提供还其他的附加技术如前面所提到隧道技术,可以轻松承载各种业务如IPX。

  

b)更好地支持虚拟专网(VPN)

目前所提出VPN解决方案,大部分都是基于在租用线路上使用加密算法来保证其安全和可靠性。

而MPLS可以轻松地将不同业务分隔开来(即便在MPLS网络内部),从而能轻松地构筑VPN。

  

c)多种协议和多连接的支持。

在MPLS网络中,标记交换并不指定由特定的网络层来完成。

如在MPLS网络可以支持IP和IPX两中网络协议。

  

d)域内路由

MPLS标记交换为将MPLS网络视为内部域,将传统的网络分隔开来。

可以将传统接入MPLS边缘设备(类似于MPOA的应用)。

从而大大的提高网络的可升级性。

  

许多公司只有内部的IP地址。

IPV4规定网络的地址必须唯一。

MPLS技术可以将内部的IP地址,在MPLS域封装成唯一标识数据包。

VirtualRouters.独一无二的“virtualRouter”技术通过支持多forwardingtables技术,有效解决VPNprivateaddress的难题。

这些forwardingtables技术将不同企业的地址段分隔开。

同样在网络的核心部分,通过使用不同传输技术(ATM,frameVCs,IP隧道技术,或者MPLS标记),也将不同地址段的地址分隔开来。

VPN的用户便可以通过integralNetworkAddressTranslation(NAT)技术轻松访问外部地址。

  

SecureVPNMembership协议。

功能如下

动态将那个节点连入那个VPN

认证服务保证VPN的安全性

动态分配IP隧道和其他路径以及分配不同VPN之间的虚拟连接。

MPLS-基于MPLS的VPN技术

VPN被一致认可为网络运营商的核心应用。

网络运营商经常面临的挑战是商业用户需要将他们建立的网络通过VPN扩展到分支机构或外部用户网。

这些基于IP的主流应用要求网络的特殊处理,包括私密性,服务质量以及any-to-any的连通性。

网络运营商的VPN业务必须具备高度的可扩展性,高性价比并可适应广泛的用户需求。

2.1基本原理

目前基于MPLS的VPN方案中,以RFC2547中规定的BGP/MPLSVPN得到了大多数厂家的支持,如Cisco,Juniper等。

BGP/MPLSVPN概念中,把整个网络中的路由器分为三类:

用户边缘路由器(CE)、运营商边缘路由器(PE)和运营商骨干路由器(P);其中,PE充当IPVPN接入路由器。

由于BGP/MPLSVPN采用PE之间通过扩展后的BGP协议(MP-BGP)来承载VPN成员关系和VPN网络可达性,所以使MPLSVPN网络具有良好的扩展性、灵活性和可靠性。

MPLSVPN的工作过程如图3:

图3

(1)CE到PE间通过IGP路由或BGP将用户网络中的路由信息通知运营商路由器(PE),在PE上有对应于每个VPN的虚拟路由表(VRF),类似有一台独立的路由器与CE进行连接。

(2)PE之间采用MP-BGP传送VPN内的路由信息以及相应的标签(VPN的标签,以下简称为内层标签),而在PE与P路由器之间则采用传统的IGP协议相互学习路由信息,采用LDP协议进行路由信息与标签(用于MPLS标签转发,以下称为外层标签)的绑定。

到此时,CE,PE以及P路由器中基本的网络拓扑以及路由信息已经形成。

PE路由器拥有了骨干网络的路由信息以及每一个VPN的路由信息(VRF)。

(3)当属于某一VPN用户端路由器(CE)有数据进入时,在CE与PE连接的接口上可以识别出该CE属于哪一个VPN,进而到该VPN的VRF路由表中去读取下一跳的地址信息,同时,在前传的数据包中打上VPN标签(内层标签)。

下一跳地址为与该PE作Peer的PE的地址,为了到达这个目的端的PE,在起始端PE中需读取MPLS骨干网络的路由信息,从而得到下一个P路由器的地址,同时采用LDP在用户前传数据包中打上用于MPLS标签交换的标签(外层标签)。

(4)在MPLS骨干网络中,初始PE之后的P均只读取外层标签的信息来决定下一跳,因此骨干网络中只是简单的标签交换。

(5)在达到目的端PE之前的最后一个P路由器时,将把外层标签去掉,读取内层标签,找到VPN,并送到相关的接口上,进而将数据传送到VPN的目的地址处

(6)P路由器是MPLSLSR。

P路由器完全依据MPLS的标签来作出转发决定。

由于P路由器完全不需要读取原始的数据包信息来作出转发决定,P路由器不需要拥有VPN的路由信息。

因此P只需要参与骨干IGP的路由,不需要参加MP-BGP的路由。

从MPLSVPN工作过程可见,MPLSVPN丝毫不改变CE和PE原有的配置,一旦有新的CE加入到网络时,只需在PE上作简单配置,其余的改动信息由BGP自动通知到CE和P。

2.2主要优点

(1)提供一个可快速部署实施增值IP业务的平台,包括内部网、外部网、话音、多媒体及网络商务。

(2)通过限制VPN路由信息的传播,仅在VPN成员内部并采用MPLS前转,可提供与第二层VPN相同的私密性及安全性。

(3)提供与用户内部网的无缝集成。

(4)高扩展性,每个网络运营商可以设定数十万VPN,每个VPN可有数千个现场。

(5)提供IP业务类别,支持VPN内部多级别业务,VPN间的优先级,灵活的服务级别选定。

(6)提供方便的VPN成员管理及新VPN创建功能以利于业务的快速实施。

MPLS-MPLS技术的实际应用

中国铁通IP骨干网全面采用MPLS技术进行构架,它采用了Cisco公司的12000系列及7000系列的高端路由器组建。

通过在全国各大城市部署专用MPLSVPN路由器(PE),中国铁通IP骨干网可在全国范围内提供的MPLSVPN业务。

这种结构可提供方便的演进策略,使铁通可以根据自己的计划及客户的需求逐步引入VPN业务。

将来更多的MPLSVPN功能会要求更新的软件版本,采用专用VPN路由器后,这些软件的更新都不会影响其它路由器。

采用MPLSVPN的网络,所有PE路由器运行IBGP以交换VPN信息,包括VPN-IP地址、路由目标(RT)、下一跳和标记,这就要求所有PE间的全网状IBGP连接,这就存在N2问题不便管理,通过路由反射(RRs)技术可满足这个要求。

中国铁通IP骨干网采用专用VPN-RR,这种方式可带来以下优势:

(1)只有PE需要与VPN-RR对应,这样可使VPN-RR有更好的扩展性。

(2)骨干网的拓扑变化不会影响VPN-RR,同时VPN内部需求的变化也不会影响骨干网中的RR。

(3)VPN-RR的部署非常灵活,在MPLSVPN推广的初期,只配置少量VPN-RR。

当网络规模变得非常大时,可以采用多RR组,每个RR组只对某个选定的MPLSVPN组提供服务。

MPLS-MPLS发展前景

MPLS作为网络的核心技术已经被大量运用到网络运营商的全国骨干网及各省市的城域网建设中,一些大型的园区网、企业网甚至也将MPLS技术用于组建VPN网络等应用中。

随着光波长路由技术的进一步发展,以及标准化工作的不断深入,光波长路由器间交换控制信息和建立光通路所用的协议MPλS(多协议波长交换)将逐渐可以与IP层面的MPLS(多协议标记交换)互通,从而为IPOverOptical网络建立起统一的、开放的、标准的控制平面提供了可能。

MPLS-MPLS技术在城域网中的应用

在以提供多业务承载为特征的MSTP技术迅速发展下,运营商已纷纷在其网络中部署MSTP设备网络,以适应城域网数据业务的需求以及未来承载3G业务的需求。

MSTP技术发展主要体现在对以太网业务的支持上,包括最初提供以太网点到点透传,后来发展到对以太网二层交换能力的支持,再到最新一代的以对MPLS的支持为主要特征的MSTP设备,即内嵌MPLS功能的MSTP设备。

1、MPLS基本原理

MPLS即多协议标签交换,最初是应用在基于三层交换的IP核心网络,主要是为了解决路由转发速度问题。

传统的IP数据网是无连接的网络,路由器根据所收到的每个包的地址去查找匹配的下一跳,并做相应的转发。

但由于路由器使用的是最长前缀匹配地址搜索,无法实现高速转发,因此引入了MPLS技术以实现其高速转发。

MPLS的运作原理是提供每个IP数据包一个标记,并由此决定数据包的路径以及优先级。

这样兼容MPLS的路由器,在将数据包转送到其路径前,仅读取数据包标记,无须读取每个数据包的IP地址以及标头,然后将所传送的数据包迅速传送至终点的路由器,进而减少数据包的延迟,同时由FrameRelay及ATM交换器所提供的QoS(QualityofService)对所传送的数据包加以分级,因而大幅提升网络服务品质提供更多样化的服务。

在数据技术的不断发展及路由器性能的不断提高下,路由的高速转发已经不存在问题了,MPLS的优势更多地体现在实现数据业务的服务质量、实施流量工程以及组建VPN。

在城域传送网中引入MPLS技术,正是利用MPLS在数据领域的众多优势,使城域传送网在高质量地支撑原有TDM业务的同时,能够高效可靠地传送各种分组业务。

如图1所示具备内嵌MPLS功能的MSTP设备,主要是在以太网和SDH间引入了中间智能适配层即MPLS封装子层,将以太网业务通过MPLS封装,加上内层MPLS标签即VC标签,再加上外层MPLS标签即隧道标签,然后通过GFP或LAPS或PPP/HDLC映射到SDH通道上进行传送。

图1内嵌MPLS功能的MSTP设备中以太网业务的映射结构

同时城域传送网中的MPLS技术与数据网MPLS技术有所不同,主要区别如下。

(1)运行层面的不同,城域传送网是在传输设备上完成数据处理功能,而三层IP网络中通过路由器(LSR)传送的;

(2)建立方法不同,城域网主要是通过网管直接建立LSP来实现的,数据网主要还是采用协议动态实现;

(3)信令传送通道不同,MSTP可以通过开销传送信令,数据设备一般是带内传送信令。

2、MPLS在城域传送网技术中的优势

MPLS技术在城域网中的作用就像“胶水”,它把接入和城域网络中不同的下层网络技术和业务类型汇聚在一起,为接入网、城域网与分组核心网集成提供了一个公共的技术。

这种具备MPLS智能适配层的MSTP设备的较传统MSTP设备主要的技术优势体现在如下几个方面。

(1)MPLS在接入网和城域网中通过封装可实现对几乎所有网络协议的支持;

(2)各个网络层次,网络结构之间,不同厂家设备之间的互通能力强。

MPLS为接入网和城域网提供了一个通用协议,它可以穿越不同的网络结构实现业务的端到端传输,并保证统一的QoS和OAM能力;

(3)业务辨认能力,MPL

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1