基于PID控制的一级倒立摆系统的研究毕业设计论文.docx

上传人:b****5 文档编号:7031728 上传时间:2023-01-16 格式:DOCX 页数:38 大小:447.88KB
下载 相关 举报
基于PID控制的一级倒立摆系统的研究毕业设计论文.docx_第1页
第1页 / 共38页
基于PID控制的一级倒立摆系统的研究毕业设计论文.docx_第2页
第2页 / 共38页
基于PID控制的一级倒立摆系统的研究毕业设计论文.docx_第3页
第3页 / 共38页
基于PID控制的一级倒立摆系统的研究毕业设计论文.docx_第4页
第4页 / 共38页
基于PID控制的一级倒立摆系统的研究毕业设计论文.docx_第5页
第5页 / 共38页
点击查看更多>>
下载资源
资源描述

基于PID控制的一级倒立摆系统的研究毕业设计论文.docx

《基于PID控制的一级倒立摆系统的研究毕业设计论文.docx》由会员分享,可在线阅读,更多相关《基于PID控制的一级倒立摆系统的研究毕业设计论文.docx(38页珍藏版)》请在冰豆网上搜索。

基于PID控制的一级倒立摆系统的研究毕业设计论文.docx

基于PID控制的一级倒立摆系统的研究毕业设计论文

 

本科生毕业设计(论文)

 

论文题目:

基于PID控制的一级倒立摆系统的研究

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:

所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:

     日 期:

     

指导教师签名:

     日  期:

     

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:

按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:

     日 期:

     

学位论文原创性声明

本人郑重声明:

所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:

日期:

年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权    大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:

日期:

年月日

导师签名:

日期:

年月日

注意事项

1.设计(论文)的内容包括:

1)封面(按教务处制定的标准封面格式制作)

2)原创性声明

3)中文摘要(300字左右)、关键词

4)外文摘要、关键词

5)目次页(附件不统一编入)

6)论文主体部分:

引言(或绪论)、正文、结论

7)参考文献

8)致谢

9)附录(对论文支持必要时)

2.论文字数要求:

理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:

任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:

1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写

2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画

3)毕业论文须用A4单面打印,论文50页以上的双面打印

4)图表应绘制于无格子的页面上

5)软件工程类课题应有程序清单,并提供电子文档

5.装订顺序

1)设计(论文)

2)附件:

按照任务书、开题报告、外文译文、译文原文(复印件)次序装订

指导教师评阅书

指导教师评价:

一、撰写(设计)过程

1、学生在论文(设计)过程中的治学态度、工作精神

□优□良□中□及格□不及格

2、学生掌握专业知识、技能的扎实程度

□优□良□中□及格□不及格

3、学生综合运用所学知识和专业技能分析和解决问题的能力

□优□良□中□及格□不及格

4、研究方法的科学性;技术线路的可行性;设计方案的合理性

□优□良□中□及格□不及格

5、完成毕业论文(设计)期间的出勤情况

□优□良□中□及格□不及格

二、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

三、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?

设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

建议成绩:

□优□良□中□及格□不及格

(在所选等级前的□内画“√”)

指导教师:

(签名)单位:

(盖章)

年月日

评阅教师评阅书

评阅教师评价:

一、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

二、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?

设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

建议成绩:

□优□良□中□及格□不及格

(在所选等级前的□内画“√”)

评阅教师:

(签名)单位:

(盖章)

年月日

教研室(或答辩小组)及教学系意见

教研室(或答辩小组)评价:

一、答辩过程

1、毕业论文(设计)的基本要点和见解的叙述情况

□优□良□中□及格□不及格

2、对答辩问题的反应、理解、表达情况

□优□良□中□及格□不及格

3、学生答辩过程中的精神状态

□优□良□中□及格□不及格

二、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

三、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?

设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

评定成绩:

□优□良□中□及格□不及格

教研室主任(或答辩小组组长):

(签名)

年月日

教学系意见:

系主任:

(签名)

年月日

摘要

本文的研究对象为一级倒立摆系统,主要是基于PID控制的一级倒立摆控制系统的设计。

利用PID参数整定的多种方法对PID的三个参数进行调节,并对其优化,然后用利用Matlab对其进行仿真,并对最后仿真图的结果进行分析与比较。

倒立摆是一种典型的非线性、多变量、强耦合、快速的、自然不稳定的系统。

在实际生产生活中有很多类似的系统,故研究一级倒立摆系统的PID控制具有很大的实际意义。

本文介绍了多种PID参数整定算法,主要采用了的是Z-N整定法,并详细介绍了PID参数整定算法的相关理论和具体操作方法。

在本文中还建立了一级倒立摆的数学模型和物理模型。

本文着重讲述了Z-N整定法和试凑法对PID三个参数的进行优化的具体方法。

用Matlab对一级倒立摆系统进行了仿真,并且比较这些方法的优缺点,对最后的仿真图结果研究和分析。

得出PID参数整定方法的优缺点。

关键词:

PID控制器参数整定一级倒立摆Matlab仿真

 

Abstract

ObjectofthispaperisaninvertedpendulumsystemismainlybasedonPIDcontrolaninvertedpendulumcontrolsystemdesign.UseavarietyofPIDparametertuningmethodtoadjustthethreeparametersofPID,anditsoptimization,andthenusethemusingmatlabsimulation,andtheresultsofthelastsimulationdiagramanalysisandcomparison.

Invertedpendulumisatypicalnon-linear,multi-variable,strongcoupling,fast,naturallyunstablesystem.Inreallifetherearealotofsimilarproductionsystems,itisofaninvertedpendulumsystemPIDcontrolhasgreatpracticalsignificance.ThisarticledescribesavarietyofPIDparametertuningalgorithm,themainuseoftheZ-Nentiretitration,anddetailsofthePIDparametertuningalgorithmsrelatedtheoryandspecificmethodsofoperation.Inthisarticle,alsoestablishedamathematicalmodeloftheinvertedpendulumandphysicalmodels.ThispaperfocusesontheZNTuningMethodforPIDandgeneticalgorithmstooptimizethethreeparametersofspecificmethods.UsingMatlabonaninvertedpendulumsystemissimulated,andcomparetheadvantagesanddisadvantagesofthesemethods,drawingonthefinalresultsofthesimulationstudyandanalysis.DrawtwodifferentPIDparametertuningmethodadvantagesanddisadvantages.

Keywords:

PID(Proportion Integration Differentiation)controllerParametertuningAninvertedpendulumMatlabsimulation

 

1绪论

1.1课题的研究背景及意义

从最初的倒立摆概念提出,再到Bang-Bang的稳定控制,然后到状态反馈的理论,再到今天的模糊控制和神经网络。

现在关于倒立摆的研究已经进入到了一个相对成熟的阶段。

而关于PID的参数整定有很多种整定方法,不同的情况适应不同的整定方法。

每种整定方法的结果并不一致,所以就需要我们比较从而找出一种最适合的。

一级倒立摆系统是一种典型的、非线性、多变量、强耦合、快速的、自然不稳定的系统,这种系统在实际的生产生活中很常见。

PID控制器是工业领域最常用的控制器,它的优点主要有以下方面,工作原理简单,使用比较方便;适应性强,应用广泛;鲁棒性强,控制品质受被控对象特性的变化影响较小。

PID的几种控制思想:

自适应控制思想和常规PID控制器相结合的自适应PID控制或自校正PID控制。

智能控制与常规控制结合的智能PID控制。

模糊PID控制。

神经网络PID控制。

预测PID控制。

时至今日,PID控制技术在工业控制中仍然占有主导地位。

所以对PID控制的一级倒立摆系统的研究具有很大的实际意义。

首先,关于一级倒立摆系统的研究要先建立力学平衡的传递函数以及状态空间表达式等数学模型和物理模型,接着分析它的稳定性和客观可控性。

最后运用一种或几种PID参数整定方法、系统频率响应分析与校正。

最后在Matlab上进行仿真,比较几种算法的效果差别。

从某种程度上来说,有关倒立摆的研究不仅有理论意义,而且还有一些工程背景,工程实践中,往往有些可行性的实验问题,倒立摆就可以起到桥梁作用能够使它的理论与方法得到检验。

通过对一级倒立摆的系统的控制,我们检验了一些控制方法以及它们是否具有比较强的处理非线性和不稳定性问题的能力;这些控制方法在航天科技、军工制造以及机器人和一般的工业领域都有广泛的应用。

在通过对一级倒立摆系统的不断研究中,总结一些非线性、多变量、强耦合、快速的、自然不稳定系统的特性。

为我们进行新的课题研究提供了一个很好的参考平台。

目前,PID控制器或智能PID控制器很多,产品在实际生产中得到广泛应用,各大公司相继开发了具有PID参数自整定功能的智能调节器,PID控制器参数的调整通过自校正、自适应算法和智能化调整来实现。

不仅有用PID控制的温度、液位、流量和压力控制器,还有可以实现PID控制功能的可编程控制器,以及PID控制的PC系统等。

可编程控制器是用闭环控制来进行PID控制,可编程控制器直接与ControlNet相连,例如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1.2国内外的研究现状

关于倒立摆系统的研究始于20世纪50年代,初期主要研究直线倒立摆的建模和摆杆的平衡控制(镇定问题),伴随着现代控制理论的不断发展,尤其是多变量线性系统理论及最优理论的发展,80年代后期模糊控制理论被用来控制倒立摆,90年代初神经控制倒立摆的研究发展迅速,它以自学习为基础,信息处理则采用了一种全新概念。

此后,倒立摆的研究取得了许多实质性的突破。

国内的有关倒立摆系统的研究开始比较晚,1982年西安交通大学实现了对二级倒立摆的控制,他们采用最优控制和降纬观测器。

1983年国防科技大学实现了对一级倒立摆系统的控制;1987年上海机械学院完成了一、二级倒立摆系统的研究,实现了在倾斜轨道上对二级倒立摆的控制。

1994年张明廉领导的课题组实现了由单电机控制的三级倒立摆。

1995年任章等用振荡控制理论改善倒立摆系统的稳定性。

1996年翁正新等用H∞状态的反馈控制器对二级倒立摆系统进行仿真控制,次年他们又用相同的方法实现了二级倒立摆在倾斜轨道上的仿真控制。

1998年蒋国飞等将Q学习算法和BP算法神经网络结合,对状态未离散化的倒立摆的无模型学习控制。

2001年单波等用基于神经网络的预测控制算法对倒立摆的控制进行了仿真。

目前我国的倒立摆研究已是世界尖端水平,李德毅最早提出了“隶属云”,成功用该理论对三级倒立摆进行智能控制;李洪兴也对三级倒立摆进行智能控制。

2002年李洪兴用变论域自适应模糊控制算法,对四级倒立摆实物系统进行控制。

次年,复杂系统智能控制实验室用变论域自适应控制理论对平面运动二级倒立摆实物系统进行控制,2003年他们率先对平面三级倒立摆实物系统进行控制。

国外学者早在上世纪60年代就开始了对倒立摆系统的研究。

1966年Schacfer等运用Bang-Bang控制原理实现了对一级倒立摆的稳定控制。

1972年Sturegeon和Loscutoff运用极点配置法并使用了全纬观测器对二级倒立摆设计了模拟控制器。

1976年S.Mori等设计的前馈-反馈负荷控制器实现了一级倒立摆的稳定控制,并设计出比例微分控制器。

1977年日本K.Furuta领导的研究组稳定了二维一级倒立摆,次年他们运用微机处理实现了二级倒立摆的控制,1980年他们对在倾斜轨道上的二级倒立摆进行了稳定控制,四年后他们又运用最优状态调节器对双电机的三级倒立摆进行控制,并且实现了二级平面倒立摆的仿真与控制。

同年,Wattes研究LQR(LinearQuadraticRegulator)方法控制倒立摆,并验证了改变性能矩阵Q和R可以得到不同的状态反馈量,从而产生不同的控制效果。

1988年CharieswW.hndorson在运用自学习模糊神经网络控制了一级倒立摆,Furuta与Fradkov等分别在1992年和1995年提出了变结构控制与无源性控制。

而INiklund等用李亚普诺夫方法成功控制环形一级倒立摆。

日本学者在1997年成功控制平面倒立摆。

与此同时,瑞士的BernhardSprenger等也成功控制直线平面倒立摆的运动机械臂[1]。

1.3本文的主要内容

本文主要研究一级倒立摆系统PID控制器的设计,首先对该系统运用牛顿-欧拉法进行力学分析并建立数学模型。

然后通过用Z-N整定或者试凑法来调节Kp、Ki、Kd三个参数来控制一级倒立摆,最后用Matlab下的Simulink来进行仿真,并对曲线图进行比较分析。

其余章节安排如下:

本文第二章详细介绍了PID控制的原理,以及多种PID参数整定方法。

同时也介绍了PID控制器的特性。

第三章主要是一级倒立摆数学模型的建立和倒立摆的控制方法。

第四章主要对PID控制系统进行仿真,通过响应曲线的分析,比较两种参数整定方法的不同,找出两种方法的差异。

最后总结全文。

 

2PID控制器参数整定法

2.1PID控制器的原理

在实际的工程中,应用最多的调节器控制规律为PID(ProportionIntegrationDifferentiation)控制。

PID控制器的历史已有70余年,它的稳定性好、结构简单、可靠性高、操作方便,是当今工业控制的主要技术。

在受控对象的结构和参数没有掌握或者它的数学模型无法精确建立的情况下,控制理论的一些技术无法使用,那么系统的控制器的结构和参数就需要依靠工程经验和现场调试确定。

控制系统中,控制器最常用是PID控制。

PID控制系统原理框图如下图1.1所示。

图1.1PID控制系统原理框图

其中r(t)为给定值;y(t)为实际输出值;e(t)为偏差。

PID控制是线性控制方法。

偏差e(t)=r(t)-y(t)。

然后把偏差e(t)分别进行比例、积分和微分的运算,把三个结果相加,就是PID控制器的控制输出u(t)。

在连续的时间域中,PID控制器的算法的公式如下:

其中Kp为比例系数,Ti为积分时间常数;Td为微分时间常数

PID控制器主要由比例环节(Proportion)、积分环节(Integration)和微分环节(Differentiation)三个环节组成。

比例环节调节作用:

成比例反应偏差,偏差一旦产生,将立即进行调节作用,减少偏差。

比例作用越大,调节越快,减少误差,但是比例过大,也会使系统的稳定性下降。

积分环节调节作用:

消除静差,提高系统的无差度。

只要有误差,积

分调节就进行,直至无差,积分调节停止后,输出常值。

积分作用的强弱与积分时间常数Ti有关,Ti越小,积分作用就越强。

反之积分作用越弱,积分调节使系统的稳定性下降,动态响应速度变慢。

积分作用常与另外两种调节规律相结合,组成PI调节器或PID调节器。

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样即便误差很小,积分项随着时间的增加而变大,使控制器的输出增大从而减小稳态误差直至零。

因此,选用比例加积分(PI)控制器,可以使系统在稳态后过程中无稳态误差。

微分环节调节作用:

主要反映偏差信号的变化趋势(变化速率),调节误差的微分输出,误差突变时,能及时控制,并能在误差偏差信号变的更大之前,在系统中引入一个的早期修正信号,加快系统动作速度,减少调节时间。

控制器的输出与输入误差信号的微分成正比。

在调节过程中伴随着克服误差所出现振荡及失稳等情况。

由于较大惯性环节或滞后环节抑制误差,其变化一直落后于误差的变化。

抑制误差的作用变化“超前”就可以有效解决这一问题,误差为零,抑制误差的作用也是零。

在控制器中仅引入比例环节是远远不够的,比例环节放大误差的幅值,而我们需要增加微分环节,因为由它能推测出误差变化趋势。

具有比例、微分环节的控制器,能够提前使抑制误差的控制作用等于零,避免了被控量的严重超调。

比例、微分、积分的组合就可以优化自动控制系统的控制性能。

下面分别介绍Z-N整定法、工程整定法、经验法、凑试法、模糊自适应PID控制器参数整定算法、改进的遗传算法PID控制器设计、基于克隆选择算法的PID控制器参数整定等PID参数整定方法。

2.2PID参数整定方法

2.2.1Z-N整定方法

常规Z-N整定方法于1942年由Ziegler和Nichols提出的。

基于受控过程的开环动态响应中某些特征参数进行的参数整定,其经验整定公式是基于带有延迟的一阶惯性模型的提出的,对象模型如下:

其中K为放大系数;为惯性时间常数;L为延迟时间。

提取特征参数的方法有以下两种。

(1)通过试验方法和受控对象的动态仿真得到的开环阶跃响应曲线。

如图2.1所示。

拐点P是特征曲线(阶跃响应)的,切线AB是切于P点,可以从图2.1中直接求出过程的特征参数

图2.1切线法求取特征参数

如果用切线法计算特征参数的话,则很难做到精确自动化,除此之外,我们还可以采用面积法,如图2.2所示。

图2.2面积法求特征参数

,其中:

(2.1)

(2.2)

(2.3)

实验得到阶跃响应后由以上三式可得

(2.4)

其中e为自然对数的底,取得特征参数之后,再用由Z-N提供的PID参数整定的经验公式,如表2.1所示,其中

表2.1Ziegler-Nichols整定公式

(一)

Kp

Ki

Kd

P

1/a

PI

0.9a

3L

PID

1.2/a

2L

L/2

开环实验决定了上述整定算法的抗干扰能力差。

(2)继电反馈自动整定方法如图2.3所示。

图2.3继电反馈自动整定结构图

在继电反馈下观测受控对象的极限环振荡,再由极限环的特征确定过程的基本性质,计算得出PID控制器的参数。

系统具有测试模态和调节模态。

如果开关处于T侧,系统为测试模态,系统的特征参数:

临界振荡角频率wc(或临界振荡周期Tc=2πwc)和临界振荡增益Kc由继电非线性环节测试,再把开关处于A侧,系统为调节模态,根据Kc和wc计算的出PID控制器的参数,并进入控制过程。

若系统的测试变化,那么重新进入测试模态测试,测试完成后继续调节模态继续进行控制。

同样Ziegler和Nichols提供了特征参数的经验整定公式,如表2.2所示。

表2.2Ziegler-Nichols整定公式

(二)

 

Kp

 

Ki

 

Kd

P

0.5Kc

PI

0.4Kc

0.8Kc

PID

0.6Kc

0.5Kc

0.12Tc

由于该方法的结果由继电反馈的闭环实验计算求得,所以对于扰动并不灵敏,相对于开环实验来说提高了测算的精度。

但是还是有其缺点,在工业控制中,实

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1