水文大循环和城市水环境代谢.docx

上传人:b****5 文档编号:6803127 上传时间:2023-01-10 格式:DOCX 页数:6 大小:23.03KB
下载 相关 举报
水文大循环和城市水环境代谢.docx_第1页
第1页 / 共6页
水文大循环和城市水环境代谢.docx_第2页
第2页 / 共6页
水文大循环和城市水环境代谢.docx_第3页
第3页 / 共6页
水文大循环和城市水环境代谢.docx_第4页
第4页 / 共6页
水文大循环和城市水环境代谢.docx_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

水文大循环和城市水环境代谢.docx

《水文大循环和城市水环境代谢.docx》由会员分享,可在线阅读,更多相关《水文大循环和城市水环境代谢.docx(6页珍藏版)》请在冰豆网上搜索。

水文大循环和城市水环境代谢.docx

水文大循环和城市水环境代谢

水文大循环和城市水环境代谢

摘要:

通过度析近代给排水系统的局限性,面对人口剧增、资源和能量消耗庞大的21世纪,论述了对现代城市新型水环境代谢体系的大体构思,提出了在水文大循环的体系中对水环境按"爱惜"和"利用"进行功能分区、对水资源按"质"和"量"合理利用的新型系统组成。

 

关键词:

水文大循环 城市 水环境代谢 给排水系统 地球环境时期

 

  1 行将终止的近代

  起始于16世纪的西欧时期,通过产业革命带来了人类大增殖的近代,而现在已因达到地球的容量限度而行将终止。

支撑近代大进展的是近代科学技术,教育的进展带来了科学技术的普及。

人们熟悉了自然现象和社会现象,并从中总结出规律,明确其因果关系,成立了学术体系,通过教育的普及,使近代的文明得以普遍传播。

恰恰在那个时候,人们将人类活动的规模与地球的尺度进行对照,看到了近代文明在组成上的限度。

地球环境制约的时期已经到来。

  近代科学技术从整体上看比较单纯粗放,在高速、大量输送技术的支撑下,单样生产技术达到规模化和效率化,依照社会组成和消费经济的关系,按不同的目的进行空间的纵向分割,以发挥其性能与作用。

近代生产活动的特点是以量(说穿了是金钱)来作为衡量功效的基准,以经济增加为主轴线,对各类价值都用单纯的量化(金钱化)指标来评判。

因此,受过几年高等教育的人就能够成为体系设计和运用的专家。

近代历史上之因此能如此较单纯地进行社会分割,形成产业,成立教育体系,维持社会有效地进展,是因为地球上的环境和资源有富裕。

但是,活着界人口膨胀到60亿的现今世纪,这种条件已不复存在。

  咱们要设法从这种窘境中脱身,但面临的困难在于,所有可供利用的方式和计谋都以近代科学技术为基础,而近代科学技术那么是造成这种窘境的缘故。

在这种情形下,必需对近代科学技术进行重组,通过对各类各样体系进行复合和融合,打破个别体系并列划分的界限,构筑综合化的新体系,寻求新的生活方式,以节省资源和空间的利用。

关于这种新体系的评判,必需快要代体系的单纯量化指标变成能表征事物本质和制造价值的抽象指标。

图1所示的城市、生产绿地、自然环境的特性和彼此关系就说明了这种新体系的特点。

为了人类的生存而维持良好的环境代谢,需要将城市、生产绿地、自然爱惜区这三个领域间和各领域内的资源利用、循环和再利用结构进行重组,降低每一环节的熵增幅度,从而尽可能减少资源、空间和能量的消耗,降低环境负荷。

图1 城市-生产绿地-自然环境的特性和彼此关系

  2 近代给排水系统的局限性

  近代给水系统以"充沛、低价地供给清洁的水"为目标。

为了保证清洁水的集中供给,必需取得充沛的清洁原水,但这不免受到流域水文大循环中径流量的制约,不可能无穷制地扩大供水量,这确实是近代给水系统的限度。

另一方面,利用过的水均作为污水,通过排水系统排放到城市的下游。

污水排放前通过生物化学处置可使生化可降解有机物(BOD成份)去除95%,这是罗马时期以来慢慢形成的城市排水系统。

氧气在空气中的浓度可达21%,但它是难溶气体,溶解在水中的浓度充其量为10mg/L。

当水中存在有机物时,溶解氧会迅速消耗,对好氧性水栖生物造成危害。

考虑到溶解氧是水质污染的首要指标,在除浊的同时,要用生化需氧量(BOD)作为河流水质操纵的指标,这一基础概念在StreeterPhelps氧垂曲线理论提出以后取得了普遍应用。

与此相应,以BOD为要紧指标的污水生化处置方式以Eckenfelder-O'Connor公式为理论基础,污水处置和环境治理在理论上彼此关联,形成了近代排水系统质量治理的基础理论体系。

可是,这种近代排水系统不能有效地操纵悬浊物和BOD之外的水质指标(见图2)。

因此,通常的污水生化处置法难以知足所有水处置的需要,而要紧用于开放水域的放流处置,以幸免造成下游河道溶解氧缺乏。

图2 水质变换矩阵

  另一方面,关于筑坝蓄水的河道,由于河水滞留时刻长,通常的污水生化处置和河流自净作用不能有效去除的磷和氮等营养盐,会致使藻类的增殖,结果造成原水中存在异臭味或毒性物质,需要采纳深度给水处置。

化肥的利用也常常致使富营养化危害,为此,欧美国家只要在要紧河流的下游和穿过农业区域的河流下游筑坝蓄水,一样都要对进水进行除磷脱氮处置。

以后的时期将重视削减环境负荷,富营养化的操纵关于区域水环境代谢体系将必不可少。

  现代城市排出的废弃物,或说代谢物中,以水的形式排出的量最大。

近代的给水系统通过集中供水系统供给各类用途的水,每人天天的用水量高达200~400L,均为可供饮用的优质水。

为了保证供水水质,如此大量的原水通常需从水文大循环的上游位置取用。

即便在最低限的水资源开发(水源林爱惜、筑坝蓄水)条件下,以日本的平均径流量为基准,一个人所需的水源集水面积为300~500m2。

如此搜集起来的水进一步净化后供给城市,利用后水质发生转变,全数变成BOD200mg/L左右的污水排到城市下游。

因为直接排放将造成流域水环境的破坏,通常需要通过BOD去除率为95%的生物化学处置(所谓的高级污水处置)使水质达到BOD10mg/L的程度后再行排放。

若是要求城市下游河道的水质维持BOD3mg/L如此的良好水平(日本河流水环境质量标准B类),排出的水那么需要2~3倍流量的清洁河水加以稀释。

该流量所对应的集水面积也为饮用水所需集水面积的2~3倍,即每人900~1000m2(见图3)。

现今日本几乎没有哪个城市能保证人均水源地面积达到那个水平,许多城市常常缺水,饮用水供给都成问题。

从上述水源地面积的角度来讲,城市最初显现的水荒问题并非是水量不足(缺水),而是河流水质恶化带来的危害(如欧美一些大流域所发生的情形那样)。

日本的河流一样来讲流程短,污水排放口*近海域,因此上述问题不太明显。

图3 每人所需的水源面积

  弥补流域水资源不足的计谋有两种:

一是在上游大规模筑坝,雨季大量蓄水,旱季放流,使平常可利用水量接近流域水文大循环的平均径流量,即所谓"径流的时刻平均化";二是快要邻利用率低的河流进行流域变更,把水输送到缺水的流域,即所谓"径流的空间平均化(流域变更和长距离调水)"。

尝试这两种计谋已是近代给排水系统的极限,而且后者将致使流域下游污染负荷的高度集中,必需同时采纳比常规污水处置法,即生物化学处置法更高级的处置设施,强化以富营养化计谋为主的下游水环境治理(见图4)。

 图4 城市的扩大和相应的给排水系统

  依照近代给排水系统的这种构造,随着流域内需水量的增大,仅从上游取水已难以知足需要,因此取水点必需向下游推移以扩大集水面积。

日本横滨的相模川确实是典型的例子。

但是下游不仅存在BOD污染,各类合成有机物引发的微污染问题也日趋严峻。

农药的利用也阻碍下游给水的水质。

日本的农业多是水田,农药会直接流入水体。

随着农业生产条件的改善引入集顶用水浇灌系统后,问题变得加倍严峻。

  近代给排水系统的水处置流程事实上是效仿地球水文大循环中,在生态学、地球化学作用下自然发生的水质变换进程,通过集中施加电力等能源,达到比自然进程快得多的水质变换速度。

在给水处置方面的代表性技术是19世纪初期显现的慢滤系统(包括自然沉淀和慢速砂滤),和20世纪初显现的快滤系统(包括混凝、沉淀、快速砂滤、氯消毒),至今仍普遍用于给水处置;在污水处置方面的代表性技术那么是19世纪末期到20世纪上半叶成立的散水过滤法和活性污泥法等好氧性微生物处置系统,利用河流自净作用的原理,使生物化学反映集中化、高速化,达到去除BOD的目的。

  但是,到20世纪后期,人类已把握了大量合成自然界本来不存在的各类有机化合物的化工技术。

在通常的时空规模下这些有机物很难通过自然生态系统进行无机化或无害化,而在环境中积蓄,被生物摄取后产生致癌和致突变作用,而且阈值低到10-12~10-9量级,定量分析也超级困难。

通常的情形下各类污染成份并存,微量多成份的分析和阻碍评判也很困难,因此必需在传统水处置流程的基础上增加去除微量成份的处置环节。

另外,最近几年来内分泌干扰物质,即所谓"环境荷尔蒙"的健康阻碍问题也引发关注,这些物质浓度极低,且毒性尚不明确。

诸如此类阻碍人体健康的微量有机化合物在多数情形下自然净化速度极慢,只能通度日性炭吸附、离子互换、臭氧处置或纳滤等附加深度处置方式从废水或饮用水原水中去除,水处置系统因此变得复杂化,且消费大量的能量,这是人们不肯看到的情形(图2)。

  在缺水情形严峻的岛屿和日本西部的城市,目前也开始尝试通过淡水化从无穷的海水中获取淡水资源。

1950年初美国就考虑到20世纪末将面临的淡水资源不足的问题,内务部设立了盐水淡化局,开展了大规模的研究工作。

此刻普遍采纳的多段闪蒸法确实是那时研究推行的结果,慢慢成为淡水化主流的反渗透法那么是佛罗里达大学Reid教授1953年提出的方式。

与常规水处置相较,淡水化所需的能量消耗要高出10多倍,达到7~10kW·h/m3。

如此的高能量消耗在地球环境时期是很难推崇的。

尤其是关于能源几乎全*入口的日本,推行淡水化相当于入口水资源,从平安保障的角度上也很难同意。

沿岸取水要躲开微量污染很不容易,城市排水接纳水域的负荷增加也成为问题,因此,除岛屿如此远离陆地的情形外,推行淡水化是不适宜的。

城市应考虑推行污水处置水的再利用,以降低能量消耗,同时减轻下游的污染负荷。

  3 质和量按用途分类的新型水环境代谢体系

  迄今为止的城市给排水系统中,给水以"充沛、低价地向市民供给清洁的水"为目的,排水那么以"增进城市卫生和进展、爱惜公共水域"为目的,给水和排水系统别离建设,并列存在,而忽略了二者都是水文大循环中串联的环节,未将两个系统融为一体,一起嵌入自然体系当中。

传统的给排水系统是成立在如此一个基础上,即人们在大自然的恩惠下生存,在人类小社会中自在生活,依照生活上的各类要求进行人类活动,而自然环境的容量能够知足这些活动的需要。

可是,当人类活动的规模相关于自然已变得较大时,在知足生活要求的同时,也必需考虑尽可能减轻对环境的阻碍,成立新型水环境代谢体系。

以后的城市水环境代谢体系要在"水资源按用途分类并重复利用,保护最低的价钱(最小的能量消耗)"的方针下设计"供给必需水量并知足必要水质"的水供给系统,将"用水和排水(水代谢)的城市要对水环境负直接责任"作为技术和经营的原那么。

用达到饮用水要求的优质水供给各类用途,最终又作为污水混合处置排放的粗放型城市给排水系统不能再进展了。

达到上述目的至少需要半个世纪,但咱们必需从此刻起就着手于成立"将人们的需要与地球环境加以综合考虑"的新型城市水环境代谢体系。

  咱们必需熟悉到,人类虽在地球上动物整体重中占了25%,但也仅仅是动物的一种,可她在地球生态体系中不是简单意义上的一个成份,而是集中把持能源,具有极高资源消耗密度,组成特异生存空间的集团,是飘浮于多样性自然生态体系的海面上,必需与其它生物共存的集团。

因此,不能将人类的物质代谢与其它生物群在自然生态体系中的代谢混为一谈,而必需考虑成立一个复合型环境代谢体系,使与自然界间的开放式代谢按环境负荷最小的方式与自然界耦合,并具有明确的、可操纵的组织边界,在边界的内侧(城市)成立具有模拟生物体那样的构造,以最小的能量消耗来驱动最低限度的物质再利用回路。

将电力等高质低熵能量的高密度消耗巧妙地置于再生系统内,周密操纵与外部环境间的开放式物质代谢和热量代谢,形成类似于动物体那样的能耗和代谢空间。

地球上多种多样的生物链中,不乏能量最有效利用和物质多次再生利用的范例,形成了循环型自然生态体系(见图1和图5)。

图5 水质按用途利用、水再生和水质治理系统及城市水环境

  人体内的水分起着物质和热量输送的作用,通过20多次的循环再利用后才排出体外,总水分的5%左右必需从体外补充。

体内的循环系统和各个部位以水为媒体进行的热量、物质传递和分离,都包括着生体膜的作用,并伴随着生物化学反映,其动力为高质量的生体能量。

今天咱们面向21世纪考虑向新型给排水系统的转换,利用有机合成膜进行精密分离的技术已经展现了其前景。

在城市水环境代谢工程领域,200年来人类与自然界间进行物质互换的生态学工程技术支撑了近代社会的进展,以后的社会将在此基础上进一步引入可称之为生体或生理学技术的膜分离技术,作为水重复利用和再生循环利用的核心水处置技术。

20世纪初期的快滤和污水生化处置技术取得普及,普遍应用于近代给排水工程100年后,又显现了新的水质变换大体技术(见图2)。

  咱们仍处在学习新的用水方式的初期。

近代产业的大体模式是从依照需要从大自然获取优质资源,用于各类目的,然后再将产生的废弃物进行处置,总之是以获取最大利益为起点进行商品生产,对优质水资源更是随意利用。

在上游获取资源,下游处置废物,两种技术各自存在,这是近代社会物质代谢进程的特点。

新的水利用体系那么是依照质量恢复的难易程度和对利用水质的要求衡量其价值,依照目的和方式确信水的用途。

对给水系统和排水系统,和二者之间的循环再利用系统,要按能量消耗率最小,而且系统可*的原那么进行设计。

考虑各类方案和相关条件、资源和能源的消耗率、设计和运转治理要求等各类复杂因素,进行体系的综合化和优化,通过数十年的尽力,终将研究出成熟的系统技术。

  但是,上述将生产(生活)活动和资源两方面连环考虑进行综合计划的思路目前还仍停留在假想的时期。

虽说是进入了地球环境时期,但对人类文明还未进行具体的再设计。

单单强调给排水系统的问题显然是不够的,水的利用牵涉到社会基础设施建设,以后的社会构造和投资方向不明确的话,长期投资建成新的给排水系统后也会面临难以经受的困难。

但在现时期,不管如何也应当明确"质"的利用是水利用的本质,在那个基础上着手新型给排水系统的研究和计划。

笔者在20年前就提出了城市水环境代谢体系构造和容量的问题[5],其大体论点到此刻也是有效的。

  4 新型城市或地域水环境代谢体系的构思

  保障人们健康平安的水(饮用水)通常占总用水量的很小一部份,仅按实际需要量从水文大循环的上游经周密治理的水源爱惜区取水,经适当处置后,由饮用水专用管道供水。

其它大量的非饮用水那么在*近下游用水点的河流中取水,该处流域面积较大,可供取用的流量也相应较大。

视需要可适量加入经深度处置后的再生回用水,通过目前利用的一样给水系统供水。

饮用原水因为是从水质良好的上游取水,因此并非需要超级复杂的水处置。

在饮用水专用管道建成之前,那么可在现有配水管网结尾用水点前,将10%左右的水经纳滤处置后由小管径的饮用水管道供给饮用水。

纳滤可利用管网压力进行,然后通过小型水泵供水。

其余90%的水与纳滤浓缩水混合,浓度虽会提高倍,但并非会对饮用之外的用水产生不良阻碍。

结尾的饮用水专用管道与上游的管道慢慢连接后,就形成所谓的"二元供水系统"。

旱季缺水时,通过向非饮用系统中适当增大再生回用水的比例即可保证供水。

曾几何时,有人假想不用改变现有的城市水利用体系,而通过海水淡化来补充日趋增加的城市用水量。

这种方式大幅度增加能量消耗,完全与地球环境时期的理念相违抗。

同时,就目前的技术,通过海水淡化取得必然量的淡水就要排出等量的浓缩液。

  基于这种思路,关于人类活动集中、人口密度高的地域,设立并列的二元输水系统,并强化闭路循环,对环境爱惜区(自然体系)和环境操纵区(城市体系)进行明确划分,成立人类活动和自然环境维持和谐关系的水环境代谢空间。

在生态系统的链接中,必需明确城市应负的责任,从而成立如图5所示的城市水环境体系。

这种水环境体系的目标在于:

①将水环境尽可能明确地划分为应爱惜和要利用的两个区域,并明确两个水环境区的结合条件,维持水环境爱惜区的良好自然条件;②环境操纵(水处置等)仅在两个区域的边界处和城市区域内进行;③充分熟悉到城市用水的本质是"水质"的合理利用,尽可能按质进行多次重复利用,将水的再利用工程中的附加能量消耗降到最低限度;④水环境区域划分要有局限,以避免水环境代谢的无穷度广域化,城市要在自身可操纵的限度内成立水环境代谢体系;⑤环境操纵区(城市)内的人类活动不能越过环境区域界限而涉及环境爱惜区。

环境空间的局限化和降低能量消费是新型水环境体系的特点,在此基础上维持和恢复自然水环境的本来面目,是面向21世纪的宏伟理想。

要实现那个理想,需要咱们以科学的态度,破除传统观念,站到比专业技术人员更高的位置来从头试探问题。

  参考文献

  1 丹保宪仁.水利用の问题点-都市·地域水システムの转换点.空气调剂和卫生工学,1973,48(8):

14

  2 丹保宪仁.近代上下水道は普遍的な环境システムか.环境情报科学,1981,10

(1):

17

  3 丹保宪仁.水代谢系の平安と变迁.都市问题研究,1981,33(8):

15

  4 丹保宪仁.新上质水道论-高密度地域における饮用の平安确保と确率的竭水被害からの离脱のために.北海道大学工学部研究报告,1983,113:

1

  5 丹保宪仁.都市·地域水代谢システムの构造と容量.水道协会杂志,1976,45

(2):

16

  6 丹保宪仁,龟井翼.水处置における处置性评判マトリツクス.水道协会杂志,1993,62(9):

28

  7 Tambo,N.UrbanmetabolismofwaterandwaterenvironmentThroughthehistoryofSapporometropolitanarea,civilengineeringforurbandevelopmentandrenewal,ProceedingsInternationalSymposiumCommemorating80thAnniversaryofJapanSocietyofCivilEngineers,1996,117

  8 丹保宪仁.必要な水量を必要な水质で.都市问题研究,1995,47(5):

34

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 面试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1