CFBFGD烟气脱硫脱硝调质.docx

上传人:b****6 文档编号:6356790 上传时间:2023-01-05 格式:DOCX 页数:25 大小:383.04KB
下载 相关 举报
CFBFGD烟气脱硫脱硝调质.docx_第1页
第1页 / 共25页
CFBFGD烟气脱硫脱硝调质.docx_第2页
第2页 / 共25页
CFBFGD烟气脱硫脱硝调质.docx_第3页
第3页 / 共25页
CFBFGD烟气脱硫脱硝调质.docx_第4页
第4页 / 共25页
CFBFGD烟气脱硫脱硝调质.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

CFBFGD烟气脱硫脱硝调质.docx

《CFBFGD烟气脱硫脱硝调质.docx》由会员分享,可在线阅读,更多相关《CFBFGD烟气脱硫脱硝调质.docx(25页珍藏版)》请在冰豆网上搜索。

CFBFGD烟气脱硫脱硝调质.docx

CFBFGD烟气脱硫脱硝调质

CFB-FGD

  CFB-FGD(循环流化床烟气脱硫技术)工艺是八十年代末由德国鲁奇(LURGI)公司首先提出的一种新颖的干法脱硫工艺。

这种工艺的创新之处在于,它以循环流化床原理为基础,使吸收剂在反应器内多次再循环,延长了吸收剂与烟气的接触时间,从而大大提高了吸收剂的利用率。

它不但具有一般干法脱硫工艺的许多优点,如流程简单、占地少、投资低以及副产品可以综合利用等,而且能在钙硫比很低(Ca/S=1.1~1.2)的情况下达到与湿法脱硫工艺相当的脱硫效率,即95%左右。

CFB-FGD技术目前已在国外发展地非常成功。

如在德国Borken电厂100MW电站锅炉上(烟气量为620000m3/h)已经有了多年的稳定运行时间和经验,并在许多中小锅炉上得到应用。

  CFB-FGD脱硫工艺由吸收剂添加系统、吸收塔、再循环系统以及自动控制系统组成(见图1)。

烟气从流化床下部布风板进入吸收塔,与消石灰颗粒充分混合,SO2、SO3及其他有害气体如HCl和HF与消石灰反应,生成CaSO3·1/2H2O、CaSO4·1/2H2O和CaCO3。

反应产物由烟气从吸收塔上部携带出去,经除尘器分离,分离下来的固体灰渣经空气斜槽送回循环床吸收塔,灰渣循环量可以根据负荷进行调节。

吸收剂的再循环延长了脱硫反应时间,提高了脱硫剂的利用率。

工艺水用喷嘴喷入吸收塔下部,以增加烟气湿度降低烟温,使反应温度尽可能接近水露点温度,从而提高脱硫效率。

  CFB-FGD工艺的吸收剂可以用生石灰在现场干消化所得到的氢氧化钙(Ca(OH)2)细粉,由于制得的消石灰颗粒已经足够细,可以满足脱硫要求,因此无须再磨,既节省了购买球磨机等大型设备的投资费用,又减少了能耗,降低了运行费用。

该工艺是一种干法流程,所以也不象湿法、半干法工艺需要为数众多的贮存罐、易磨损的浆液输送泵等复杂的吸收剂制备和输送系统,用简单的空气斜槽就可以输运,大大简化了工艺流程。

该工艺的副产品呈干粉状,其化学组成与喷雾干燥工艺的副产品类似,主要成分有飞灰、CaSO3、CaSO4以及未反应的吸收剂等、加水后会发生固化反应,固化后的屈服强度可达15-18N/mm2,渗透率约为3×10-11,压实密度为1.28g/cm3,

  强度与混凝土接近,渗透率与黏土相当,因此适合用于矿井回填、道路基础等方面。

  我国中小锅炉总数超过45万台,经济上难以承受国外许多传统的脱硫技术。

循环流化床(CFB)烟气脱硫工艺是一种经济高效的脱硫技术,不仅适用于大型燃煤锅炉,而且也可用于中小锅炉,适合我国国情。

1.石灰石-石膏湿法烟气脱硫化学反应原理与性能

FGD装置的核心是喷淋式吸收塔。

烟气从吸收塔中部进入,入口在吸收塔浆池最高液位上部和最低一层喷淋层下部之间。

在吸收塔内,烟气与顶部喷淋下来的石灰石/石膏浆液逆流接触,被冷却到绝热饱和温度,烟气中的SO2和SO3与浆液中的石灰石反应,形成亚硫酸钙和硫酸钙,亚硫酸钙在吸收塔浆池中被氧化空气氧化成硫酸钙,过饱和溶液结晶生成石膏(CaSO4·2H2O)。

烟气中的HCl、HF也与浆液中的石灰石反应而被吸收。

在吸收塔顶部的除雾器除去烟气中带入的水滴,净烟气在吸收塔顶部以饱和温度离开吸收塔。

吸收塔由吸收区、氧化区和结晶区组成,结构示意图如下:

2.FGD系统组成

2.1烟气脱硫装置主要由以下子系统组成:

n  石灰石浆液制备与输送系统;

n  烟气系统;

n  SO2吸收系统;

n  排空、浆液抛弃与集水系统;

n  工艺水系统;

n  仪用空气系统。

2.2主要性能

脱硫效率:

>95%,完全满足我国火电厂SO2排放标准要求;

石膏含水率:

〈10%;

装置可用率:

〉98%。

3.FGD工艺流程图

4.社会、经济效益

目前,进口FGD装置造价约1000元/KW,实现国产化后,造价约400元/KW,经济效益巨大。

我国酸雨污染每年造成的经济损失超过1000亿元。

控制SO2排放,不仅可以改善环境,也可大大减少酸雨污染导致的经济损失。

我国目前的经济条件和技术条件还不允许象发达国家那样投入大量的人力和财力,并且在对二氧化硫的治理方面起步很晚,至今还处于摸索阶段,国内一些电厂的烟气脱硫装置大部分欧洲、美国、日本引进的技术,或者是试验性的,且设备处理的烟气量很小,还不成熟。

不过由于近几年国家环保要求的严格,脱硫工程是所有新建电厂必须的建设的。

因此我国开始逐步以国外的技术为基础研制适合自己国家的脱硫技术。

以下是国内在用的脱硫技术中较为成熟的一些,由于资料有限只能列举其中的一些供读者阅读。

石灰石——石膏法烟气脱硫工艺

  石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。

  它的工作原理是:

将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。

经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。

由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95%。

旋转喷雾干燥烟气脱硫工艺

  喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。

与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。

脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。

脱硫后的烟气经除尘器除尘后排放。

为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。

该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。

  喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。

该工艺在美国及西欧一些国家有一定应用范围(8%)。

脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。

磷铵肥法烟气脱硫工艺

  磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。

该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收(磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。

它分为两个系统:

  烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。

  肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。

炉内喷钙尾部增湿烟气脱硫工艺

  炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。

该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。

由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。

在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。

当钙硫比控制在2.0~2.5时,系统脱硫率可达到65~80%。

由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。

  该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。

烟气循环流化床脱硫工艺

  烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。

该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。

  由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。

吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈磨擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3和CaSO4。

脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。

  此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。

典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。

此工艺在国外目前应用在10~20万千瓦等级机组。

由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。

海水脱硫工艺

  海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。

在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。

吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。

海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。

海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。

近几年,海水脱硫工艺在电厂的应用取得了较快的进展。

此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。

电子束法脱硫工艺

  该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。

锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。

烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。

通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。

然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。

这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。

净化后的烟气经脱硫风机由烟囱向大气排放。

氨水洗涤法脱硫工艺

  该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。

锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。

在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。

在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。

再经烟气换热器加热后经烟囱排放。

洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。

为了控制SO2污染,防治酸雨危害,加快我国烟气脱硫技术和产业发展已刻不容缓。

国家烟气脱硫工程技术研究中心对多种烟气脱硫脱硝技术进行了研究开发,主要包括:

1、磷铵肥法(PAFP)烟气脱硫技术磷铵肥法(PhosphateAmmoniateFertilizerProcess,简称PAFP),是我校和四川省环科院、西安热工所、大连物化所等单位共同研究开发的烟气脱硫新工艺(国家“七五”(214)项目新技术083号)。

其脱硫率≥95%,脱硫副产品为氮硫复合肥料。

此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。

而且该技术已于1991年通过国家环保局组织的正式鉴定,获国家“七五”攻关重大成果奖,四川省科技进步二等奖等多项奖励。

2、活性炭纤维法(ACFP)烟气脱硫技术活性炭纤维法(ActivatedCarbonFiberProcess,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。

该技术脱硫率可达95%以上,单位脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。

由于工艺过程简单,设备少,操作简单。

投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅炉烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅炉的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”的状况。

该烟气脱硫技术按10万KW机组锅炉机组烟气计,装置投资费用3500万,年产硫酸3万~4万吨。

仅用于全国高硫煤电厂脱硫每年约可减少SO2排放240万吨,副产硫酸360万吨,产值可达数十亿元。

该技术已获国家发明专利,并已列入国家高新技术产业化项目指南。

3、软锰矿法烟气脱硫资源化技术MnO2是一种良好的脱硫剂。

在水溶液中,MnO2与SO2发生氧化还原发应,生成了MnSO4。

软锰矿法烟气脱硫正是利用这一原理,采用软锰矿浆作为吸收剂,气液固湍动剧烈,矿浆与含SO2烟气充分接触吸收,生成副产品工业硫酸锰。

该工艺的脱硫率可达90%,锰矿浸出率为80%,产品硫酸锰达到工业硫酸锰要求(GB1622-86)。

常规生产工业硫酸锰方法是:

软锰矿粉与硫酸和硫精沙混合反应,产品净化得到工业硫酸锰。

由于我国软锰矿品位不高,硫酸耗量增大,成本上升。

该法与常规生产工业硫酸锰相比是,不用硫酸和硫精沙,溶液杂质也降低,原料成本和工艺成本都有降低,比常规生产工业硫酸锰方法节约成本25%以上,加之国家对环保产品在税收上的优惠,竞争力将大大提高。

该工艺原料软锰矿价廉,大约200~300元/吨,估计5年左右可收回投资。

该工艺不但治理了工业废气,处理了制酸废水,并且回收了硫酸锰产品,具有明显的社会环境和经济效益。

4、电子束氨法烟气脱硫脱硝技术电子束氨法烟气脱硫脱硝工业化技术(简称CAEB-EPS技术),充分挖掘电子束辐照烟气脱硫脱硝技术的潜力,结合中国具体国情,具有投资省、运行费用低、运行维护简便、可靠性高等独有的特点,居国际先进水平。

 CAEB-EPS技术是利用高能电子束(0.8~1MeV)辐照烟气,将烟气中的二氧化硫和氮氧化物转化成硫酸铵和硝酸铵的一种烟气脱硫脱硝技术。

该技术的工业装置一般采用烟气降温增湿、加氨、电子束辐照和副产物收集的工艺流程。

除尘净化后的烟气通过冷却塔调节烟气的温度和湿度(降低温度、增加含水量),然后流经反应器。

在反应器中,烟气被电子束辐照产生多种活性基团,这些活性基团氧化烟气中的SO2和NOx,形成相应的酸。

它们同在反应器烟气上游喷入的氨反应,生成硫酸氨和硝酸氨微粒。

副产物收集装置收集产生的硫酸氨和硝酸氨微粒,可作为农用肥料和工业原料使用。

5、脉冲电晕放电等离子体烟气脱硫脱硝技术  脉冲电源产生的高电压脉冲加在反应器电极上,在反应器电极之间产生强电场,在强电场作用下,部分烟气分子电离,电离出的电子在强电场的加速下获得能量,成为高能电子(5~20eV),高能电子则可以激活、裂解、电离其他烟气分子,产生OH、O、HO2等多种活性粒子和自由基。

在反应器里,烟气中的SO2、NO被活性粒子和自由基氧化为高阶氧化物SO3、NO2,与烟气中的H2O相遇后形成H2SO4和HNO3,在有NH3或其它中和物注入情况下生成(NH4)2SO4/NH4NO3的气溶胶,再由收尘器收集。

脉冲电晕放电烟气脱硫脱硝反应器的电场本身同时具有除尘功能。

具有装置简单、运行成本低、有害污染物清除彻底、不产生二次污染等优点。

燃煤电厂、化工、冶金、建材等行业产生的含二氧化硫和氮氧化物的烟气。

6、石灰石/石膏湿法该方法是世界上最成熟的烟气脱硫技术,采用石灰或石灰石乳浊液吸收烟气中的SO2,生成半水亚硫酸钙或石膏。

优点:

(1)脱硫效率高(有的装置Ca/S=1时,脱硫效率大于90%);

(2)吸收剂利用率高,可达90%;(3)设备运转率高(可达90%以上)。

缺点:

成本较高、副产物产生二次污染等。

7、“MN法”烟气脱硫技术该技术采用新型脱硫剂MN进行烟气脱硫,脱硫效率高于95%,吸收剂再生容易,损失率小,无阻塞现象,在脱硫过程种再生可回收利用,投资和运行费用低于类似的“W-L”法脱硫技术。

8、“柠檬酸盐法”烟气脱硫技术该法采用柠檬酸进行烟气脱硫,脱硫效率高于90%,由于采用添加剂,吸收剂再生容易,SO2可回收利用,投资和运行费用较低。

9、催化氧化法烟气脱硫技术该法采用适用低浓度的新型催化剂,通过催化氧化,在脱硫过程中,将SO2转化为硫酸,其脱硫效率高于90%,产品有市场,以国内有关研究为基础,通过与国外合作研究、国内留学基金资助,其技术正逐步成熟,有望成为一种有竞争力的新型烟气脱硫技术。

10、造纸黑液烟气脱硫技术该技术利用造纸黑液脱除烟气中SO2,既治理了SO2烟气污染又使造纸黑液得以处理,并同时回收生产木质素。

11、烟气除尘脱硫一体化技术以碱性液体(石灰、石灰石、其他碱液废液)为吸收剂,在一结构紧凑、功能齐全的装置中去除烟气中SO2,脱硫效率50~95%,除尘效率>90%,投资省,运行费低,占地面积小,阻力小,适用于35t/h以下锅炉使用。

12、微生物烟气脱硫技术研究利用微生物作用,将千代田法脱硫的低价铁氧化为高价铁,循环使用,脱硫与尾液处理并用。

脱硫率>90%,在常温常压下,效率优于千代田法,为国家自然科学基金。

13、等离子法烟气脱硫技术烟气SO2中在高压脉冲电压作用下,与加入的NH3反应生成(NH4)2SO4,脱硫效率大于90%,已完成400m3/h的实际燃煤烟气试验。

该法为国家自然科学基金资助项目。

14、磷酸盐法烟气脱硫技术该法在对几十种磷酸盐进行烟气脱硫试验基础上,优选出一些我国较为丰富价廉的磷酸盐作为脱硫剂进行烟气脱硫,其脱硫率高,价廉的磷酸盐经过脱硫升值较高。

如磷矿石脱硫除镁新工艺。

其脱硫率高达90%,还得到副产品MgSO4,具有较好的市场前景。

15、络合铁法烟气脱硫技术该法由我校和美国劳伦斯国家实验室合作研究,并获国家回国人员资金资助,有关研究表明,采用络合铁法烟气脱硫,脱硫效率可达90%以上,硫可回收利用,脱硫剂再生容易,损失率低。

 

1.  SCR技术原理与性能

1.1锅炉尾部烟气经过SCR反应器,在催化剂作用下,烟气中的NOX与喷入的氨液滴反应,生成氮气和水蒸汽,达到脱除NOX的目的。

主要的反应式如下:

4NO+4NH3+O2↔4N2+6H2O

NO+NO2+2NH3↔2N2+3H2O

1.2主要技术性能如下:

烟气脱硝效率:

>90%,满足我国火电厂大气污染物排放标准要求;

可用率:

>98%。

2.  SCR系统组成

SCR系统主要由以下子系统组成:

n   氨储存系统

n   烟气/氨混合器

n   烟气均布装置

n   SCR反应器

n   控制系统

n   吹灰器、烟气挡板等

3.SCR工艺流程图

4.社会、经济效益

实现600MW机组SCR国产化,仅催化剂一项,就可节约投资30%,经济效益巨大。

建设SCR装置,使削减NOX排放的主要措施,对于减少臭氧层破坏,改善大气环境具有重大作用,因此有着重大的社会效益。

烟气脱硝技术

1原理

 在金属催化剂的作用下,喷入的氨把烟气中的NOX还原成N2和H2O。

 

2反应式

 4NO+4NH3+O2 → 4N2+6H2O

 NO+NO2+2NH3 → 2N2+3H2O

 上述反应在没有催化剂的情况下,只在980°C左右很在的温度范围内进行;但在催化剂的作用下,反应温度可大大降低,约300°C~400°C。

 

3加氨系统

3.1无水加氨系统

氨从氨罐依次进入蒸发器和积聚器,经减压后与空气混合,再喷入烟道中。

 

3.2有水氨系统

氨从氨罐经雾化喷嘴进入高温蒸发器,蒸发后的氨喷入烟道中。

SCR脱硝原理

SCR(SelectiveCatalyticReduction)——选择性催化还原法脱硝技术是目前国际上应用最为广泛的烟气脱硝技术,在日本、欧洲、美国等国家地区的大多数电厂中基本都应用此技术,它没有副产物,不形成二次污染,装置结构简单,并且脱除效率高(可达90%以上),运行可靠,便于维护等优点。

SCR技术原理为:

在催化剂作用下,向温度约280~420℃的烟气中喷入氨,将NOX还原成N2和H2O。

NH3与烟气均匀混合后一起通过一个填充了催化剂(如V2O5-TiO2)的反应器,NOx与NH3在其中发生还原反应,生成N2和H2O。

反应器中的催化剂分上下多层(一般为3—4层)有序放置。

该方法存在以下问题:

催化剂的时效和烟气中残留的氨。

为了增加催化剂的活性,应在SCR前加高校除尘器。

残留的氨与SO2反应生成(NH4)2SO4,NH4HSO4很容易对空气预热器进行粘污,对空气预热器影响很大。

在布置SCR的位置是我们应多反面考虑该问题。

型火电机组湿烟囱排放

2008-04-2117:

02:

49  作者:

  来源:

互联网  浏览次数:

21  文字大小:

【大】【中】【小】

简介:

摘 要:

阐述了火电厂湿法烟气脱硫装置中烟气加热器的运行特点,对脱硫装置采用湿烟囱排放的可行性和存在的问题进行了分析,对脱硫装置提出了改进措施。

建议采用钛和钛铂合金复合板作烟囱内筒,可以降低烟气对烟囱的...

摘 要:

阐述了火电厂湿法烟气脱硫装置中烟气加热器的运行特点,对脱硫装置采用湿烟囱排放的可行性和存在的问题进行了分析,对脱硫装置提出了改进措施。

建议采用钛和钛铂合金复合板作烟囱内筒,可以降低烟气对烟囱的腐蚀,延长烟囱的使用寿命。

关键词:

脱硫装置;烟气加热器;湿烟囱排放;腐蚀

  目前,国内大型火力发电机组几乎都采用石灰石/石膏湿法脱硫,投资较大,一般占电厂投资的8%。

大部分电厂脱硫装置选择的气-气加热器(即烟气加热装置GGH)的价格昂贵,约占整个脱硫设备投资的7%左右。

自20世纪80年代中期以来,美国设计的大多数FGD已选择湿烟囱运行,省除了烟气加热装置,经济优势十分明显。

近年,这种湿烟囱排放工艺在我国也得到了应用。

1 湿烟囱排放的可行性

目前,FGD工艺技术水平的烟气加热器对于减少洗涤器下游侧的冷凝物是有效的,对去除透过除雾器被烟气夹带过来的液滴和汇集在烟道壁上较大液滴的作用不大。

因此,烟气加热器对于

降低其下游侧设备腐蚀的作用有限。

实际

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1