公务员考试数字推理技巧总结.docx

上传人:b****5 文档编号:5777260 上传时间:2023-01-01 格式:DOCX 页数:7 大小:85.79KB
下载 相关 举报
公务员考试数字推理技巧总结.docx_第1页
第1页 / 共7页
公务员考试数字推理技巧总结.docx_第2页
第2页 / 共7页
公务员考试数字推理技巧总结.docx_第3页
第3页 / 共7页
公务员考试数字推理技巧总结.docx_第4页
第4页 / 共7页
公务员考试数字推理技巧总结.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

公务员考试数字推理技巧总结.docx

《公务员考试数字推理技巧总结.docx》由会员分享,可在线阅读,更多相关《公务员考试数字推理技巧总结.docx(7页珍藏版)》请在冰豆网上搜索。

公务员考试数字推理技巧总结.docx

公务员考试数字推理技巧总结

数字推理技巧总结(简单精辟!

2008-10-1117:

21

数字推理技巧总结:

备考规律一:

等差数列及其变式

(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)

(1)后面的数字与前面数字之间的差等于一个常数。

如7,11,15,(19)

(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

如7,11,16,22,(29)

(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

如7,11,13,14,(14.5)

(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。

【例题】7,11,6,12,(5)

(5)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。

【例题】7,11,16,10,3,11,(20)

备考规律二:

等比数列及其变式

(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)

(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,(64)

(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。

【例题】4,8,24,96,(480)

(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2

【例题】4,8,32,256,(4096)

(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。

【例题】2,6,54,1428,(118098)

(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。

【例题】2,-4,-12,48,(240)

备考规律三:

“平方数”数列及其变式

(an=n2+d,其中d为常数或存在一定规律)

(1)“平方数”的数列【例题】1,4,9,16,25,(36)

(2)每一个平方数减去或加上一个常数

【例题】0,3,8,15,24,(35)

【例题变形】2,5,10,17,26,(37)

(3)每一个平方数加去一个数值,而这个数值本身就是有一定规律的。

【例题】2,6,12,20,30,(42)

备考规律四:

“立方数”数列及其变式

(an=n3+d,其中d为常数或存在一定规律)

(1)“立方数”的数列【例题】8,27,64,(125)

(2)“立方数”的数列,其规律是每一个立方数减去或加上一个常数

【例题】7,26,63,(124)

【例题变形】9,28,65,(126)

(3)每一个立方数加去一个数值,,而这个数值本身就是有一定规律的。

【例题】9,29,67,(129)

 

备考规律五:

求和相加、求差相减、求积相乘、求商相除式的数列

(第三项等于第一项与第二项的运算结果,或者相差一个常量,或者相差一定的规律)

第一项与第二项相加等于第三项【例题】56,63,119,182,(301)

第一项减去第二项等于第三项【例题】8,5,3,2,1,

(1)

第一项与第二项相乘等于第三项【例题】3,6,18,108,(1944)

第一项除以第二项等于第三项【例题】800,40,20,2,(10)

备考规律六:

“隔项”数列

(1)相隔的一项成为一组数列,即原数列中是由两组数列结合而成的。

【例题】1,4,3,9,5,16,7,(25)

备考规律七:

混合式数列

【例题】1,4,3,8,5,16,7,32,(9),(64)将来数字推理的不断演变,有可能出现3个数列相结合的题型,即有可能出现要求考生填写3个未知数字的题型。

所以大家还是认真总结这类题型。

【例题变形】1,4,4,3,8,9,5,16,16,7,32,25,(9),(64),(36)

 

1.数字推理

数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。

在解答数字推理题时,需要注意的是以下两点:

一是反应要快;二是掌握恰当的方法和规律。

一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。

另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。

两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。

只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。

由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。

只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。

需要说明一点:

近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。

因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。

这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。

有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。

此时,与其“卡”死在这里,不如抛开这道题先做别的题。

在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。

在做这些难题时,有一个基本思路:

“尝试错误”。

很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。

2.数学运算

数学运算题主要考查解决四则运算等基本数字问题的能力。

在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案,并判断所计算的结果与答案各选项中哪一项相同,则该选项即为正确答案,并在答卷纸上将相应题号下面的选项字母涂黑。

数学运算的试题一般比较简短,其知识内容和原理多限于小学数中的加、减、乘、除四则运算。

尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要考生算得既快又准。

二、解题技巧及规律总结

数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。

在实际解题过程中,根据相邻数之间的关系分为两大类:

一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:

1、相邻两个数加、减、乘、除等于第三数

2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数

3、等差数列:

数列中各个数字成等差数列

4、二级等差:

数列中相邻两个数相减后的差值成等差数列

5、等比数列:

数列中相邻两个数的比值相等

6、二级等比:

数列中相邻两个数相减后的差值成等比数列

7、前一个数的平方等于第二个数

8、前一个数的平方再加或者减一个常数等于第二个数;

9、前一个数乘一个倍数加减一个常数等于第二个数;

10、隔项数列:

数列相隔两项呈现一定规律,

11、全奇、全偶数列

12、排序数列

二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n的平方加减n构成

2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n

3、数列中每一个数字都是n的倍数加减一个常数

以上是数字推理的一些基本规律,必须掌握。

但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?

这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答

第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案

一、看特征,做试探。

①首先观察数列的项数,如果项数比较长,或有两项是括号项,可考虑虑奇、偶项数列和两两分组数列。

例如:

25,23,27,25,29,27(奇、偶项数列)

②其次观察数列的数字特点,注意各项数字是否为整数的平方或立方,或是与它们左右相邻或相近的数字,如果是,则可考虑平方数列或立方数列。

例如:

2,5,10,17,26(数列各项减1得一平方数列)

③再次观察数列数字间的变化幅度的大小,如果前几项较小,末项却突然增大数倍,则此是可考虑等比数列;如果数列的起伏不大,变化幅度小且逐渐递增或递减,则可考虑等差数列。

例如:

4,8,16,32,64,128(等比数列)

3,5,8,12,17(二级等差数列)

④如果数列内有多项分数或者根式,则一般需要将其余项均化为分数或者根式。

二、单数字发散。

即从题目中所给出的某一个数字出发,寻找与之相关的各个特征数字,从而找到解析试题的“灵感”的思维方式。

①分解发散。

针对某个数,联系其各个因子(即约数)及其因子的表示形式(包括幂次形式、阶乘形式等),牢记典型质数与“典型形似质数”的分解方式。

②相邻发散。

针对某个数,联系与其相邻的各个具有典型特征的数字(即“基准数字”),将题干中数字与这些“基准数字”联系起来,从而洞悉解题的思想。

例如:

题目中出现了数字26,则从26出发我们可以联想到:

三、多数字联系。

即从题目中所给的某些数字组合出发,寻找之间的联系,从而找到解析例题的“灵感的思维方式”。

多数字联系的基本思路:

把握数字之间的共性;把握数字之间的递推关系。

例如:

题目出现了数字1、4、9,则从1、4、9出发我们可以联想到:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1