《长方体和正方体的表面积》教学反思.docx
《《长方体和正方体的表面积》教学反思.docx》由会员分享,可在线阅读,更多相关《《长方体和正方体的表面积》教学反思.docx(23页珍藏版)》请在冰豆网上搜索。
《长方体和正方体的表面积》教学反思
《长方体和正方体的表面积》教学反思
设计思想
“长方体和正方体的表面积”是在学生已经掌握了一些简单的平面图形知识的基础上,过渡到初步的立体图形上学习的。
本节课的学习目标是让学生进一步认识长方体和正方体的特征,掌握长方体和正方体表面积的计算,体现“立体——平面——立体”螺旋上升、循序渐进的教学思想,并通过平面图形和立体图形的联系沟通,培养和发展学生初步的空间想象能力。
课堂教学是素质教育的主渠道,素质教育是以全面提高全体学生的基本素质为根本目的,以弘扬学生的主体性和主动精神为主要特征,注重开发学生的智慧潜能,注重形成人的健全个性。
因此在小学数学课堂教学中,引导学生主动参与,自主探索,锤炼思维,培养能力,发展智力,浸润情感态度是素质教育的应有之义,“长方体和正方体和表面积”一课,正是从这一思路出发预设、生成教学过程的。
1、从生活实际引入新课
创设一个能够吸引学生的、源于生活的、有趣的、有用的、可操作的、可探索的情景,有利于激发学生的学习兴趣和愿望,使学生处于积极主动的学习状态,有利于学生自主探索。
新课标强调“要让学生在现实情境中和已有知识的基础上体验和理解数学知识”“要提供丰实的现实背景”任何知识源于生活又服务于生活。
生活中处处有数学,让现实的生活数学走进学生视野,使生活数学与数学问题有机地结合起来,使学生体会在生活中做数学的乐趣。
设计时应从生活实际出发,引导学生明确学习求长方体、正方体表面积的必要性,以激发学生的求知欲。
2、按知识形成发展过程展开新课
知识的形成发展是有层次的,且与旧知识紧密相连。
新课展开必须以学生原有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
为此,新课的组织展开以有利于教材结构与学生的认知结构产生同化,有利于学生主动建构为目的。
3、运用现代化教育手段,显现知识结构
学生计算长方体、正方体表面积必须具有较强的空间观念,这是教学的难点。
为此,借助于实物投影、模型、多媒体课件,让学生观察、触摸、拼拆、抽拉、展示,全方位感知,培养空间观念,寻找知识的结合点,让各种现代化教学手段协同互补在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。
“长方体和正方体的表面积”教学案例与反思
案例:
一、创设情境,激发兴趣,理解表面积的意义。
师:
(出示一个长方体纸盒和一个正方体纸盒)猜一猜,这两个纸盒那个用的纸板多?
生:
我觉得这个长方体用的纸板多。
因为它比这个正方体长。
生:
我觉得这个正方体用的纸板多。
因为它比这个长方体高。
生:
我觉得这两个纸盒用的纸板同样多。
因为这个长方体比这个正方体长,而这个正方体又比这个长方体高。
中和一下就同样多了。
师:
如果只靠我们这样空口无凭地去猜,能否得出正确结果?
生:
不能。
师:
那我们应该怎么办?
生:
我们应该分别计算出它们的六个面的总面积。
师:
你的想法真不错。
长方体或正方体6个面的总面积就叫做他的表面积。
摸一摸、说说长方体的表面积都包括哪儿?
生:
边指边说,包括上下、左右和前后六个面。
二、动手操作,探究长方体的表面积的计算方法。
师:
老师给每个小组都准备了8个长方形,要求:
从给出的8个长方形中选出6个长方形围成一个长方体,同时思考:
(出示)①长方体的6个面之间有什么关系?
②长方体每个面的两条边分别与相邻两个面的边长有什么关系?
通过量一量、剪一剪、拼一拼、摆一摆等方法求出长方体的表面积,并把讨论结果写在之上。
生:
小组活动。
生:
反馈交流
第一种方法:
我们先求出每个面的面积,再把这六个面的面积相加,就能算楚这个长方体的表面积了。
第二种方法:
我们先把长方体的六个面剪开,把相对的面摆在一起组成三大部分,再用长×宽×2+高×宽×2+长×高×2,就能算楚这个长方体的表面积了。
师:
你们的想法很好,还有其它想法吗?
生:
还可以用乘法分配律把第二种方法写成(长×宽+高×宽+长×高)×2,也就是把长方体纸盒剪成面积相等的两大部分上面、左面、前面和下面、右面、后面。
师:
你能够运用过去所学知识来解决新的问题,很会学习。
在这些方法中,你认为哪种方法好?
为什么?
生:
我认为第三种方法好,因为这种方法最简便。
师:
我们今天学的这种类型的题当然用第三种方法比较简便,但在实际生活中还会遇到很多实际情况,我们要根据实际情况灵活运用计算表面积的方法。
三、精心设计练习,逐步优化求长、正方体表面积的方法。
1、用你喜欢的方法计算纸盒的表面积。
(单位:
厘米)
23
5
2、选择求上、下地面是正方形的长方体表面积的最优方法。
①(5×3+5×3+3×3)×2
②5×3×4+5×3×3×2
53
3
3、选择求长、宽、高相同的长方体表面积的最优方法。
①3×3×6
33②(3×3+3×3+3×3)×2
3
四、联系实际,灵活应用,培养学生创新的精神。
1、讲下列物体的表面积所包括的面进行分类。
(1)无盖的长方体木箱
(2)正方体纸盒(3)在一个长方体游泳池四壁和底面抹水泥(4)长方体包装箱(5)手提袋(6)灯管的包装盒(7)字典的封皮(8)火柴盒,
2、一间教室,长8米,宽5米,高4.5米,要粉刷屋顶和四壁,除去门窗面积20平方米,粉刷面积是多少平方米?
反思:
《长方体和正方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。
学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。
为了使学生更好地建立表面积的概念和计算方法,应加强动手操作和直观演示,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行设计教学方案。
本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。
一、创设情境,以“争”激思
新课伊始,创设让学生“猜一猜”做一个长方体纸盒和正方体纸盒,哪个用的纸板较多这一情境,引发学生思考,“用什么方法才能比较出来呢?
”学生通过思考与交流,认识到“必须分别计算出六个面的总面积”,这时教师因势利导指出:
“长方体或正方体六个面的总面积叫做表面积”,然后再让学生摸一摸、说一说长方体的表面积包括哪儿?
这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
二、实践操作,以“动”激思
数学知识具有高度的抽象性,我们要多引导学生在操作中思考加工,培养技能技巧,促进思维发展,因此,在教学长方体表面积计算方法时,先让学生动手操作,以长方体的特征为依据,从给出的8个长方形中选取相应的面拼成长方体,同时让学生思考:
①长方体六个面之间的关系?
(相对的两个面是完全相同的。
)②长方体每个面的两条边分别与相邻的两个面边长之间的关系?
(每个面的两条边一定分别与相邻的两个面的一条边相等。
)学生在动手拼的过程中,通过比较分析深刻地认识了长方体的特征,抓住了推导长方体表面积计算方法的关键,然后让学生在小组活动中通过量一量、剪一剪、拼一拼、摆一摆等方法,共同探索出长方体表面积的计算方法。
在这里鼓励学生有不同方法,培养了学生的求异思维。
三、巧编习题,以“练”促思。
在学生掌握了长方体表面积的计算方法后,不单独安排时间推导正方体表面积的计算方法,而是设计了一道综合练习,(图略,选择求长、宽、高都是3厘米的长方体的表面积的最优方法。
①3×3×6②(3×3+3×3+3×3)×2③3×3×4+3×3×2)。
以选择题的形式出现,学生在说算式意义的过程中很自然地发现了正方体表面积的计算方法,这一设计,改变了以往将正方体的表面积独立用一单位时间教学的方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。
四、联系实际,以“用”促思。
数学来源于生活,同时又服务于生活。
应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。
为此,我先出示了以下几种情况,
(1)无盖的长方体木箱
(2)正方体纸盒(3)在一个长方体游泳池四壁和底面抹水泥(4)长方体包装箱(5)手提袋(6)灯管的包装盒(7)字典的封皮(8)火柴盒,让学生从各种物体的表面积所包括的面进行分类。
从中使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们在求表面积是不可以千篇一律,死套公式,要根据实际情况具体问题具体分析。
在此基础上,我又及时拓宽学生的思路,让学生举出在日常生活中,做哪些事与求长方体或正方体的部分面积有关,培养了学生的空间想象力和求异思维的能力。
再有,与实际生活联系,学生乐学、愿学。
本节课教学也存在一定的不足,例如,优生在课堂上仍是主角,学困生由于动手能力差,思维跟不上,大部分时间只能充当观众与听众,从课堂练习可以看出他们对所学的知识一知半解,课堂如果让他们充分动手操作与表达,又会花费大量的时间,如何解决这样的矛盾,仍是我今后的重要研究内容。
《长方体正方体的体积》教学反思
案例片断:
教师拿出准备好的量杯,注入半杯红色的水,又拿出一节电池、一个方铁块,一个石块。
师:
现在请一位同学上来,把电池放进量杯里,再取出来,再把铁块、石块也分别放进量杯里,再取出来,量杯里的水会发生怎样的变化呢?
为什么?
生:
把电池、铁块、石块放入量杯时,水上升了,取出后,水又回到了原来的位置。
师:
把三个物体分别放进量杯的水中,水上升的高度一样吗?
(教师重复一次实验)为什么?
生:
三次都不一样,因为三个物体的大小不同。
电池的个最大,水上升的也最高。
师:
同学们观察得很细,说得也对,老师再补充一点。
从刚才的实验中,我们看到了电池、铁块、石块这些物体都占有空间,由于这些物体的大小不同,所以他们所占的空间大小也不同。
我们把“物体所占空间的大小叫做物体的体积”。
这就是我们今天要研究的内容。
课后反思:
在教学认识体积的意义时,我用一个量杯盛半杯红色水,让学生想象要在量杯中放入一些物体,会出现什么情况。
然后通过试验,观察在盛有水的容器中,分三次放入电池、铁块、石块三个大小不同的物体时所发生的情况,水面上升的高度有什么变化?
(上升的高度不同),说明每个物体都是占有一定的空间的,从而概括出体积的概念,使学生明白知道物体所占空间的大小叫做物体的体积。
在教学中我十分重视直观因素的作用,目的是吸引学生,激发学生的求知欲,如当学生看到老师拿着电池、铁块、石块、量杯走进教室时,大感疑惑,这是上自然课吗?
老师要给我们教什么呢?
学生产生了好奇心,随着教学的开展,由好奇心转化为求知欲,让其在迫切的要求下,在积极实验的进程中,获取知识,培养能力,发展智力,这样安排比较符合学生的知识基础和认知特点,能够较好的激起学生的求知欲望,使学生处在一种欲罢不能的境地,为学生进入新的学习奠定了良好的基础。
《长方体与正方体的体积计算》教学反思
一、联系实际生活,解决实际问题。
长方体和正方体体积的计算,是在理解了体积的概念和体积的单位以后教学的,教师通过切开一个长4厘米、宽3厘米、高2厘米的长方体,看看它含有多少个1立方厘米的体积单位,引入计量体积的方法.但是在很多情况下,是不能用切开的方法来计量物体的体积的.教师采用了让学生用棱长1厘米的正方体拼摆长方体的实验,引导学生找出计算长方体体积的方法。
教师考虑到学习数学是为了解决实际生活中的数学问题,要让学生认识数学知识与实际生活的关系,考虑到解决问题的实际情况,(如,不是所有物体都能切开,)怎样才能更好更快的解决问题,(如,找到计算长方体体积的公式,)从而从实践上升到理论,找到解决问题的一般规律。
二、加强实际操作,发展空间观念。
体积对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次重大的发展。
然而此时,学生对立体的空间观念还很模糊,教师特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体计算公式的理解。
在教学时,教师给了学生12个1立方厘米的小正方体,让学生摆放出不同的长方体,并把长、宽、高的数据填入表格中,启发学生思考,根据记录的长、宽、高,摆这个长方体一排要摆几个小正方体,要摆几排,摆几层,一共是多少个小正方体。
再引导学生进一步思考,这个长方体所含小正方体的个数,与它的长、宽、高有什么关系。
最后,通过学生自己比较、发现长方体体积的计算公式,并用字母表示。
在教学完长方体的计算公式后,教师继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。
正是教师正确把握了本册教材的重点,发展学生的空间观念,加强实际操作。
通过实际观察、制作、拆拼等活动,学生清楚地理解长方体体积计算公式的来源,并能够根据所给的已知条件正确地计算有关图形的体积。
学生的动手能力也得到了提高。
三、小组合作交流、培养自主学习能力。
传统的教学观念阻碍了学生主动性的发挥和创造力的培养,要改变传统观念就要实现三个转变:
教学目标,由以知识传授为主改为增长经验、发展能力;教学方法,由以教师为中心改为以学生为中心;课堂气氛,由以严格遵守常规改为生动活泼、主动探索。
在新的教育观念的指导下,教师在本节课中大胆地实践,采用小组合作交流,给学生最大限度参与学习的机会,通过教师的引导,学生自主参与数学实践活动,经历了数学知识的发生、形成过程,掌握了数学建模方法。
学生在活动中表现出主动参与、积极活动的热情让每个听课老师都能感受到,本节课的教学目标也就达到了,因为它不仅仅让学生学会了一种知识,还让学生培养了主动参与的意识,增进了师生、同伴之间的情感交流,提高了实际操作能力,……
《数的整除复习课》
【教学目的】
1、归纳整理“数的整除”的有关概念,让学生理解每个概念并能够掌握概念间的内在联系,形成完整的认知结构。
2、尝试针对自己知识上的不足进行有选择的练习。
3、渗透一些学习数学的方法。
【教学重点】
本单元知识的整理与回顾;及对易混淆概念的理解。
【教具准备】
写好概念名称的卡片。
【教学过程】
一、猜数游戏
我们先轻松一下,玩一个猜数游戏吧。
抢答:
如一个两位数,十位上的数既不是质数也不是合数,个位上的数最大约数是8。
问:
刚才我们在猜数时用到了数的整除中的一些知识,今天我们就一起来复习“数的整除”(出示课题)。
对于课题中的数你是怎样理解的?
二、沟通联系,形成网络。
1、通过预先复习,你觉得这部分内容有哪些知识点?
(随意贴出)
2、看到这些纸条这样贴在黑板上你有什么感觉?
怎么办?
(板书:
整理)
3、根据它们之间的联系,你能把它们串联在一张网络图吗?
(网络图的设计在课前进行,上课时重点进行展示交流)
4、哪个小组愿意第一个为大家介绍你们的网络图?
问:
为什么会有这样的联系?
这个图还要补充什么吗?
师生共同整理完善知识结构。
指出:
这些知识之间是有密切联系的。
这张图可以使这部分知识更加条理化、系统化。
三、逐一梳理,辨析概念
1、在这些知识中,你认为哪个最重要?
谁知道什么叫整除?
(多请几位说说)
A、口答:
下面哪些式子里的被除数能被除数整除?
哪些不能?
⑴16÷8=2;⑵32÷4=8⑶21÷5=4……1;
⑷13÷5=2.6;⑸18÷30=0.6;⑹9÷3=3
B、问:
象算式3、4、5叫被除数被除数怎么样?
那整除和除尽之间有什么关系?
(出示集合图)
2、你认为最难理解的概念是什么?
互质数、质因数
3、你认为比较容易混淆的概念有哪些?
板书:
(1)奇数、偶数、质数、合数;
(2)约数、公约数、最大公约数;
(3)倍数、公倍数、最小公倍数;
(4)互质数、质因数
4、对每个概念的意义我们要掌握,容易混淆的我们格外要注意,把它们弄清楚,这是我们复习的一个重要任务,我们班的同学语文功底特棒,接下来就请大家在这节数学课上展现一下你们的造句水平,从每组中选一个或几个说一句话。
5、谁自告奋勇选择你最感兴趣的说说。
男女生打擂
每组概念安排几道相关的题目
四、应用知识
反馈练习:
(一)填空
1、在1、2、3、9、24、41和51中,奇数是(),偶数是(),质数是(),合数是(),()是奇数但不是质数,()是偶数但不是合数。
2、一个数的最小倍数是12,这个数有(0个约数。
3、21的所有约数是(0,21的全部质因数有(0。
4、a=2×3×5,b=2×3×3,a、b两数的最大公约数是(0,最小公倍数是()。
5、a、与b是互质数,它们的最大公约数是(),它们的最小公倍数是()。
(二)判断
1任何自然数都有两个公约数。
2、所有偶数的公约数是2。
3、因为8和13的公约数只有1,所以8和13是互质数。
4、因为21÷7=3,所以21是倍数,7是约数。
5、因为60=3×4×5,所以3、4、5、都是60的质因数。
(三)选择
1、已知a能整除23,那么a是:
①46;②23;③1或23()
2、把210分解质因数是:
①210=2×7×3×5×1;②210=2×5×21;③210=3×5×2×7×。
()
3、两个奇数的和是:
①是奇数;②是偶数;③可能是奇数,也可能是偶数。
4、如果a、b都是自然数,并且a÷b=4,那么数a和数b的最大公约数是:
①4;②a;③b。
()
5、一个正方形的边长是一个奇数,这个正方形的周长一定是:
①质数;②奇数;③偶数。
()
“约数和倍数”一课的反思
我上了“约数和倍数”一课,感触颇深。
一、关于目标定位
在设计这节课时,首先确定了以理解“整除”、“约数”和“倍数”的意义及相互间的关系、整除中“1”和“0”两个特殊的数的情况作为知识目标;判断是否是整除、正确叙述整除、约数和倍数关系及在概括整除的意义环节中培养观察、类推等能力作为技能目标。
这仅仅是在设计教案之初设定的目标,是完整教案中的一部分,它的定位准确仅是上好这节课的前提,而非保证。
而更重要的是在具体教学过程设计中体现出的目标定位,这是备好一节课的基本条件。
最重要的,则是教学实施过程中体现的目标定位,这才真正是评定一节课的目标定位的依据。
我在这一节课的设计中,即上述前两个方面,目标定位是比较明确的,但最关键的第三个方面即实施过程中所体现出的目标定位相对来说就没有足够的重视,因此也就使得原先设定的目标没有得到最好的落实。
这使我感觉到,目标的定位并非在教学设计时设定好了就可以“一劳永逸”,而是一定要贯穿到整个教学流程的始终。
二、关于教学设计
我在设计这节课时,在设定目标之后就在目标的指引下按“一般流程”来设计教学过程,并参照了一些好的课例,课的知识点、环节、问题情境的设计是很完整的。
但现在想来,如果在设计教案时首先确定一个大的框架,然后再进行填补,肯定能使教学思路更为清晰,重点更为突出。
就像搭一个建筑物,先搭一个大框架,再逐步填充,比脑子里想着结构一块砖一块砖垒上去更加容易把握住。
我在这节课的设计之初,有一个比较明确的大体框架,但在具体设计时,则一个一个环节细细推敲,甚至于一句话都要推敲得令自己满意为止。
但这样随着“推敲”的逐步深入与细化,课的大框架即整体思路反而淡化了,甚至有一些模糊,这显然是得不偿失的。
这使我感觉到,要备好一节课,必须始终把握住一个整体的框架,而不能过于重视一些细枝末节的东西,这样才能把握住课的重点,形成一个清晰的教学思路。
三、关于教学实施
为了上好这节课,我首先想到了摆正教师与学生的主导与主体地位,于是精心设计了每一个环节,能让学生自主探究的决不包办替代,这在如今形势下应该算是“应时之举”。
课的第一部分是理解“整除”的意义,我也组织了学生探究,即算、分类、找特征、概括意义;最后关于两个特殊的数“0”与“1”,也安排了一组填充来让学生找规律。
但在具体实施中,由于怕“讲过头”有越位之嫌,关键处学生即使探究不出什么来也不敢讲,却不想导致了“导”得太多,完全违背了初衷,甚至像兜圈子,也因而坐失良机,降低了效率。
该出手时还是得出手,而不是从一个极端走向另一个极端,学生无法探究出的或者是根本不需要由学生探究的,该讲授还是要讲授,该自学的还是自学,我想这样才是对新课改的正确把握。
要提高数学教学的质量,精讲多练无疑是最有效的策略。
要做到这一点,我们要做的还有很多,很多。
“质数、合数和分解质因数”一课的反思
数学课堂教学应努力营造浓厚的学习氛围,唤起学生的主体意识,培养学生的实践能力,激发学生的主体意识,让学生成为课堂的主人。
最近我上了“质数、合数和分解质因数”的练习课,这一课的主要任务是让学生通过练习,进一步掌握质因数的概念,进一步学会分解质因数的方法。
但课前我发现课中还有一精彩处,那就是让学生研究一个数的质因数与它的约数之间的关系,及两个数的公有的质因数之积与它们两数的关系。
我知道,放手让学生去探究对提高学生的学习兴趣是有益而无害的,而且能让学生探究、发现这些关系比学生单纯掌握几个概念,模仿一些解题方法更为重要,但另一方面也得舍得腾出一些本可用于“多练”的时间让学生去观察、研究。
事实证明,我的这一设计是成功的。
在这样的活动中,学生的多种感官协同参与学习。
不仅能有效地完成学习任务,还能提高观察、操作、分析、语言表达等多种能力。
相信,经过长期的训练,定能使我们的教学达到事半功倍的效果。
《求两个数的最大公约数》教学设计
教学内容:
小学数学第十册第55、56页例1、2、3。
教材解读:
最大公约数是在学生掌握了约数的概念的基础上进行教学的,主要是为学习约分做准备。
教材通过例1的的教学帮助学生建立公约数和最大公约数的概念,并以集合图直观地表示,以加深学生对公约数的理解。
例2、例3安排了两种特殊情况下公约数的求法,让学生通过找约数的方法,去观察、比较、思考、发现,使学生掌握了两个数互质或成倍数关系时,最大公约数的特点。
教学目标:
1、使学生掌握公约数、最大公约数、互质数的意义,会用找约数的方法找两个数的公约数和最大公约数,结合渗透集合的思想。
2、使学生熟练地确定互质的两个数和成倍数关系的两个数的最大公约数。
3、培养学生的观察能力、概括能力和主动探求新知的能力。
教学重点:
使学生理解公约数的有关概念,会用找约数的方法求两个数的最大公约数。
资源利用:
学生经验:
学生已经掌握了约数的概念,学会了找约数的方法,具有一定的观察能力、概括能力和探求知识的能力,能凭借生活经验解决一些简单的实际问题。
教学准备:
练习纸、小黑板
课程实施:
一、情境引入
1、创设问题:
最近,我们学校为了创省实验学校,准备搞一些画板,每块画板
长12分米,宽8分米。
美术组的同学想在上面正好贴满大小相同的正方形装饰画,这种装饰画的边长应为多少分米?
(取整数)你能为他们提一些好的建议吗?
2、小组内讨论一下,可以借用发给你们的长方形纸,把长方形纸想成缩小了的画廊,在纸上画一画,看一看有几种不同的设计方法,再想一想其中有什么规律?
3、交流:
说说你们小组的设计方法,贴了边长为几分米的正方形?
4、引入公约数、最大公约数的概念:
你们是怎么想出贴这些正方形的?
像1、2、4既是12的约数,又是8的约数,我们可以称它们是12和8的什么?
(公约数)
贴哪种正方形的画,张数会最少?
为什么?
给“4”取个名字?
(最大公约数)
5、揭示课题:
最大公约数
二、探究方法
1、看了课题,你认为今天会学些什么?
2、通过刚才的学习,有谁已经知