大学本科外文翻译精.docx

上传人:b****5 文档编号:5627646 上传时间:2022-12-29 格式:DOCX 页数:13 大小:29.84KB
下载 相关 举报
大学本科外文翻译精.docx_第1页
第1页 / 共13页
大学本科外文翻译精.docx_第2页
第2页 / 共13页
大学本科外文翻译精.docx_第3页
第3页 / 共13页
大学本科外文翻译精.docx_第4页
第4页 / 共13页
大学本科外文翻译精.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

大学本科外文翻译精.docx

《大学本科外文翻译精.docx》由会员分享,可在线阅读,更多相关《大学本科外文翻译精.docx(13页珍藏版)》请在冰豆网上搜索。

大学本科外文翻译精.docx

大学本科外文翻译精

大连理工大学外文翻译

受弯钢框架结点周期性行为Cyclicbehaviorofsteelmomentframeconnections

学院(系):

建筑工程学院

专业:

工程管理

学生姓名:

____

学号:

___________

指导教师:

_________

完成日期:

大连理工大学

DalianUniversityofTechnology

受弯钢框架结点周期性行为Cyclicbehaviorofsteelmomentframeconnections

1.Introduction

Aimedatevaluatingthestructuralperformanceofreduced-beamsection(RBS)connectionsunderalternatedaxialloadingandlateraldisplacement,fourfull-scalespecimensweretested.ThesetestswereintendedtoassesstheperformanceofthemomentconnectiondesignfortheMosconeCenterExp-ansionundertheDesignBasisEarthquake(DBE)andtheMaximumConsideredEarthquake(MCE).PreviousresearchconductedonRBSmomentconnections[1,2]showedthatconnectionswithRBSprofilescanachieverotationsinexcessof0.03rad.However,doubtshavebeencastonthequalityoftheseismicperformanceoftheseconnectionsundercombinedaxialandlateralloading.

TheMosconeCenterExpansionisathree-story,71,814m2(773,000ft2)structurewithsteelmomentframesasitsprimarylateralforce-resistingsystem.AthreedimensionalperspectiveillustrationisshowninFig.1.Theoverallheightofthebuilding,atthehighestpointoftheexhibitionroof,isapproxima-tely35.36m(116ft)abovegroundlevel.Theceilingheightattheexhibitionhallis8.23m(27ft),andthetypicalfloor-to-floorheightinthebuildingis11.43m(37.5ft).ThebuildingwasdesignedastypeIaccordingtotherequi-rementsofthe1997UniformBuildingCode.

TheframingsystemconsistsoffourmomentframesintheEast–Westdirect-ion,oneoneithersideofthestairtowers,and

–1–

受弯钢框架结点周期性行为fourframesintheNorth–Southdirection,oneoneithersideofthestairandelevatorcoresintheeastendandtwoatthewestendofthestructure[4].Becauseofthestoryheight,thecon-ceptoftheCoupled-GirderMoment-ResistingFramingSystem(CGMRFS)wasutilized.

Bycouplingthegirders,thelateralload-resistingbehaviorofthemomentframingsystemchangestoonewherestructuraloverturningmomentsareresistedpartiallybyanaxialcompression–tensioncoupleacrossthegirdersystem,ratherthanonlybytheindividualflexuralactionofthegirders.Asaresult,astifferlateralloadresistingsystemisachieved.Theverticalelementthatconnectsthegirdersisreferredtoasacouplinglink.Couplinglinksareanalogoustoandservethesamestructuralroleaslinkbeamsineccentricallybracedframes.Couplinglinksaregenerallyquiteshort,havingalargeshear-to-momentratio.

Underearthquake-typeloading,theCGMRFSsubjectsitsgirderstowariab-bleaxialforcesinadditiontotheirendmoments.TheaxialforcesintheFig.1.MosconeCenterExpansionProjectinSanFrancisco,CAgirdersresultfromtheaccumulatedshearinthelink.

2.AnalyticalmodelofCGMRF

Nonlinearstaticpushoveranalysiswasconductedonatypicalone-baymodeloftheCGMRF.Fig.2showsthedimensionsandthevarioussectionsofthemodel.Thelinkflangeplateswere28.5mm254mm(11/8in10in)andthewebplatewas9.5mm476mm(3/8in183/4in).TheSAP2000computerprogramwasutilized

–2–

受弯钢框架结点周期性行为inthepushoveranalysis[5].Theframewascharacterizedasfullyrestrained(FR).FRmomentframesarethoseframesfor1170whichnomorethan5%ofthelateraldeflectionsarisefromconnectiondeformation[6].The5%valuerefersonlytodeflectionduetobeam–columndeformationandnottoframedeflectionsthatresultfromcolumnpanelzone.

Theanalysiswasperformedusinganexpectedvalueoftheyieldstressandultimatestrength.Thesevalueswereequalto372MPa(54ksi)and518MPa(75ksi),respectively.Theplastichinges’load–deformationbehaviorwasapproximatedbythegeneralizedcurvesuggestedbyNEHRPGuidelinesfortheSeismicRehabilitationofBuildings[6]asshowninFig.

3.△ywascalcu-P–Mhingeload–deformationmodelpointsC,DandEarebasedonTable5.4from[6]for△ywastakenas0.01radperNote3in[6],Table5.8.Shearhingeload-load–deformationmodelpointsC,DandEarebasedonTable5.8[6],LinkBeam,Itema.AstrainhardeningslopebetweenpointsBand

Cof3%oftheelasticslopewasassumedforbothmodels.

Thefollowingrelationshipwasusedtoaccountformoment–axialloadinteraction[6]:

whereMCEistheexpectedmomentstrength,ZRBSistheRBSplasticsectionmodulus(in3),istheexpectedyieldstrengthofthematerial(ksi),Pistheaxialforceinthegirder(kips)andistheexpectedaxialyieldforceoftheRBS,equalto(kips).TheultimateflexuralcapacitiesofthebeamandthelinkofthemodelareshowninTable1.Fig.4showsqualitatively

–3–

受弯钢框架结点周期性行为thedistributionofthebendingmoment,shearforce,andaxialforceintheCGMRFunderlateralload.Theshearandaxialforceinthebeamsarelesssignificanttotheresponseofthebeamsascomparedwiththebendingmoment,althoughtheymustbeconsideredindesign.Thequalita-tivedistributionofinternalforcesillustratedinFig.5isfundamentallythesameforbothelasticandinelasticrangesofbehavior.Thespecificvaluesoftheinternalforceswillchangeaselementsoftheframeyieldandinternalfor-cesareredistributed.ThebasicpatternsillustratedinFig.5,however,remainthesame.

Inelasticstaticpushoveranalysiswascarriedoutbyapplyingmonotonicallyincreasinglateraldisplacements,atthetopofbothcolumns,asshowninFig.6.AfterthefourRBShaveyieldedsimultaneously,auniformyieldinginthewebandattheendsoftheflangesoftheverticallinkwillform.Thisistheyieldmechanismfortheframe,withplastichingesalsoformingatthebaseofthecolumnsiftheyarefixed.ThebaseshearversusdriftangleofthemodelisshowninFig.7.Thesequenceofinelasticactivityintheframeisshownonthefigure.Anelasticcomponent,alongtransition(consequenceofthebeamplastichingesbeingfosimultaneously)andanarrowyieldplateaucharacterizethepushovercurve.

Theplasticrotationcapacity,qp,isdefinedasthetotalplasticrotationbeyondwhichtheconnectionstrengthstartstodegradebelow80%[7].ThisdefinitionisdifferentfromthatoutlinedinSection9(AppendixS)oftheAISCSeismicProvisions

–4–

受弯钢框架结点周期性行为[8,10].UsingEq.

(2)derivedbyUangandFan[7],anestimateoftheRBSplasticrotationcapacitywasfoundtobe0.037rad:

FyfwassubstitutedforRy•Fy[8],whereRyisusedtoaccountforthediffer-encebetweenthenominalandtheexpectedyieldstrengths(Grade50steel,Fy=345MPaandRy=1.1areused).

3.Experimentalprogram

Theexperimentalset-upforstudyingthebehaviorofaconnectionwasbasedonFig.6(a).Usingtheplasdisplacementdp,plasticrotationgp,andplasticstorydriftangleqpshowninthefigure,fromgeometry,itfollowsthat:

inwhichdandgincludetheelasticcomponents.Approximationsasaboveareusedforlargeinelasticbeamdeformations.ThediagraminFig.6(a)suggestthatasubassemblagewithdisplacementscontrolledinthemannershowninFig.6(b)canrepresenttheinelasticbehaviorofatypicalbeaminaCGMRF.

Thetestset-upshowninFig.8wasconstructedtodevelopthemechanismshowninFig.6(a)and(b).Theaxialactuatorswereattachedtothree2438mm×1219mm×1219mm(8ft×4ft×4ft)RCblocks.Theseblocksweretensionedtothelaboratoryfloorbymeansoftwenty-four32mmdiameterdywidagrods.Thisarrangementpermittedreplacementofthespecimenaftereachtest.

Therefore,theforceappliedbytheaxialactuator,P,canberesolvedintotwoorthogonalcomponents,PaxialandPlateral.Sincetheinclinationangleoftheaxialactuatordoesnotexceed3.0,thereforePaxialisapproximatelyequaltoP[4].However,

–5–

受弯钢框架结点周期性行为thelateralcomponent,Plateral,causesanadditionalmomentatthebeam-tocolumnjoint.Iftheaxialactuatorscompressthespecimen,thenthelateralcomponentswillbeaddingtothelateralactuatorforces,whileiftheaxialactuatorspullthespecimen,thePlateralwillbeanopposingforcetothelateralactuators.Whentheactuatorsundergoaxialactuatorsundergoalateraldisplacement_,theycauseanadditionalmomentatthebeam-to-columnjoint(P-△effect).Therefore,themomentatthebeam-tocolumnjointisequalto:

whereHisthelateralforces,Listhearm,Pistheaxialforceand_isthelateraldisplacement.

Fourfull-scaleexperimentsofbeamcolumnconnectionswereconducted.

AllofthecolumnsandbeamswereofA572Grade50steel(Fy344.5MPa).Theactualmeasuredbeamflangeyieldstressvaluewasequalto372MPa,whiletheultimatestrengthrangedfrom502MPa(72.8ksi)to543MPa(78.7ksi).

Thespecimensweredesignatedasspecimen1throughspecimen

4.TestspecimensdetailsareshowninFig.9throughFig.12.Thefollowingfeatureswereutilizedinthedesignofthebeam–columnconnection:

TheuseofRBSinbeamflanges.Acircularcutoutwasprovided,asillustr-atedinFigs.11and12.Forallspecimens,30%ofthebeamflangewidthwasremoved.Thecutsweremadecarefully,andthengroundsmoothinadirect-tionparalleltothebeamflangetominimizenotches.

–6–

受弯钢框架结点周期性行为Useofafullyweldedwebconnection.Theconnectionbetweenthebeamwebandthecolumnflangewasmadewithacompletejointpenetrationgrooveweld(CJP).AllCJPweldswereperformedaccordingtoAWSD1.1StructuralWeldingCode

UseoftwosideplatesweldedwithCJPtoexteriorsidesoftopandbottombeamflan-ges,fromthefaceofthecolumnflangetothebeginningoftheRBS,asshowninFigs.11and12.TheendofthesideplatewassmoothedtomeetthebeginningoftheRBS.ThesideplateswereweldedwithCJPwiththecolumnflanges.Thesideplatewasadded

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1