专业外文文献翻译分布式发电.docx

上传人:b****6 文档编号:5577992 上传时间:2022-12-28 格式:DOCX 页数:9 大小:23.76KB
下载 相关 举报
专业外文文献翻译分布式发电.docx_第1页
第1页 / 共9页
专业外文文献翻译分布式发电.docx_第2页
第2页 / 共9页
专业外文文献翻译分布式发电.docx_第3页
第3页 / 共9页
专业外文文献翻译分布式发电.docx_第4页
第4页 / 共9页
专业外文文献翻译分布式发电.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

专业外文文献翻译分布式发电.docx

《专业外文文献翻译分布式发电.docx》由会员分享,可在线阅读,更多相关《专业外文文献翻译分布式发电.docx(9页珍藏版)》请在冰豆网上搜索。

专业外文文献翻译分布式发电.docx

专业外文文献翻译分布式发电

ImpactofHighPenetrationofDistributedGenerationonSystemDesignandOperations

(1.BartoszWojszczyk1,OmarAl-Juburi2,JoyWang3Accenture,Raleigh27601,U.S.;2.Accenture,SanFrancisco94105,U.S.;3.Accenture,Shanghai200020,China)

ABSTRACT:

Thispaperaddressesthetopicofmassiveutility-orienteddeploymentofDistributedGeneration(DG)inpowersystems.HighpenetrationofDGpresentssignificantchallengestodesign/engineeringpracticesaswellastothereliableoperationofthepowersystem.Thispaperexaminestheimpactoflarge-scaleDERimplementationonsystemdesign,reliableoperationandperformanceandincludespracticalexamplesfromutilitydemonstrationprojects.ItalsopresentsavisionfortheutilityofthefutureanddescribesDGtechnologiesbeingimplementedbyutilities.

KEYWORDS:

distributedenergyresources;distributedgeneration;powersystemdesignandoperation

0Introduction

Distributedgeneration(DG)ordecentralizedgenerationisnotanewindustryconcept.In1882,ThomasEdisonbuilthisfirstcommercialelectricplant—“PearlStreet”.Thispowerstationprovided110VDCelectricityto59customersinlowerManhattan.In1887,therewere121EdisonpowerstationsintheUnitedStatesdeliveringDCelectricitytocustomers.Thesefirstpowerplantswererunonwaterorcoal.Centralizedpowergenerationbecamepossiblewhenitwasrecognizedthatalternatingcurrentpowercouldbetransportedatrelativelylowcostsandreducepowerlossesacrossgreatdistancesbytakingadvantageoftheabilitytoraisethevoltageatthegenerationstationandlowerthevoltagenearcustomerloads.Inaddition,theconceptsofimprovedsystemperformance(systemstability)andmoreeffectivegenerationassetutilizationprovidedaplatformforwide-area/globalgridintegration.Inrecentyears,therehasbeenarapidlygrowinginterestinwidedeploymentofDG.CommerciallyavailabletechnologiesforDGarebasedoncombustionengines,micro-andmini-gasturbines,windturbines,fuel-cells,variousphotovoltaic(PV)solutions,low-headhydrounitsandgeothermalsystems.

Deregulationoftheelectricutilityindustry(insomecountries),environmentalconcernsassociatedwithtraditionalfossilfuelgenerationpowerplants,volatilityofelectricenergycosts,FederalandStateregulatorysupportof“green”energyandrapidtechnologicaldevelopmentsallsupporttheproliferationofDGunitsinelectricutilitysystems.ThegrowingrateofDGdeploymentsuggeststhatalternativeenergy-basedsolutionsplayanincreasinglyimportantroleinthesmartgridandmodernutility.

Large-scaleimplementationofDGcanleadtosituationsinwhichthedistribution/mediumvoltagenetworkevolvesfroma“passive”(local/limitedautomation,monitoringandcontrol)systemtoonethatactively(global/integrated,self-monitoring,semi-automated)respondstothevariousdynamicsoftheelectricgrid.Thisposesachallengefordesign,operationandmanagementofthepowergridasthenetworknolongerbehavesasitoncedid.Consequently,theplanningandoperationofnewsystemsmustbeapproachedsomewhatdifferentlywithagreateramountofattentionpaidtoglobalsystemchallenges.

Theprincipalgoalofthispaperistoaddressthetopicofhighpenetrationofdistributedgenerationanditsimpactongriddesignandoperations.Thefollowingsectionsdescribeavisionforthemodernutility,DGtechnologylandscape,andDGdesign/engineeringchallengesandhighlightssomeoftheutilityDGdemonstrationprojects.

1Visionformodernutilities

1.1Centralizedvs.distributed

Thebulkofelectricpowerusedworldwideisproducedatcentralpowerplants,mostofwhichutilizelargefossilfuelcombustion,hydroornuclearreactors.Amajorityofthesecentralstationshaveanoutputbetween30MW(industrialplant)and1.7GW.ThismakesthemrelativelylargeintermsofbothphysicalsizeandfacilityrequirementsascomparedwithDGalternatives.Incontrast,DGis:

1)Installedatvariouslocations(closertotheload)throughoutthepowersystemandmostlyoperatedbyindependentpowerproducersorconsumers.

2)Notcentrallydispatched(althoughthedevelopmentof“virtual”powerplants,wheremanydecentralizedDGunitsoperateasonesingleunit,maybeanexceptiontothisdefinition).

3)DefinedbypowerratinginawiderangefromafewkWtotensofMW(insomecountriesMWlimitationisdefinedbystandards,e.g.US,IEEE1547definesDGupto10MW–eitherasasingleunitoraggregatecapacity).

4)Connectedtothedistribution/mediumvoltagenetwork-whichgenerallyreferstothepartofthenetworkthathasanoperatingvoltageof600Vupto110kV(dependsontheutility/country).

Themainreasonswhycentral,ratherthandistributed,generationstilldominatescurrentelectricityproductionincludeeconomyofscale,fuelcostandavailability,andlifetime.IncreasingthesizeofaproductionunitdecreasesthecostperMW;however,theadvantageofeconomyofscaleisdecreasing—technologicaladvancesinfuelconversionhaveimprovedtheeconomyofsmallunits.Fuelcostandavailabilityisstillanotherreasontokeepbuildinglargepowerplants.Additionally,withalifetimeof25~50years,largepowerplantswillcontinuetoremaintheprimesourceofelectricityformanyyearstocome.

Thebenefitsofdistributedgenerationinclude:

higherefficiency;improvedsecurityofsupply;improveddemand-responsecapabilities;avoidanceofovercapacity;betterpeakloadmanagement;reductionofgridlosses;networkinfrastructurecostdeferral;powerqualitysupport;reliabilityimprovement;andenvironmentalandaestheticconcerns(offersawiderangeofalternativestotraditionalpowersystemdesign).DGoffersextraordinaryvaluebecauseitprovidesaflexiblerangeofcombinationsbetweencostandreliability.Inaddition,DGmayeventuallybecomeamoredesirablegenerationassetbecauseitis“closer”tothecustomerandismoreeconomicalthancentralstationgenerationanditsassociatedtransmissioninfrastructure.ThedisadvantagesofDGareownershipandoperation,fueldelivery(machine-basedDG,remotelocations),costofconnection,dispatchabilityandcontrollability(windandsolar).

1.2Developmentof“smartgrid”

Inrecentyears,therehasbeenarapidlygrowinginterestinwhatiscalled“SmartGrid–DigitizedGrid–GridoftheFuture”.Themaindriversbehindthismarkettrendaregridperformance,technologyenhancementandstakeholders’attention.Themainvisionbehindthismarkettrendistheuseofenhancedpowerequipment/technologies,monitoringdevices(sensors),digitalandfullyintegratedcommunications,andembeddeddigitalprocessingtomakethepowergridobservable(abletomeasurethestatesofcriticalgridelements),controllable(abletoaffectthestateofanycriticalgridelement),automated(abletoadaptandself-heal),anduser-friendly(bi-directionalutility–customerinteraction).TheSmartGridconceptshouldbeviewedthroughthemodernutilityperspectiveofremainingprofitable(goodvaluetoshareholders),continuingtogrowrevenuestreams,providingsuperiorcustomerservice,investingintechnologies,makingproductofferingscosteffectiveandpainfreeforcustomerstoparticipateandpartneringwithnewplayersintheindustrytoprovidemorevaluetosociety.ItisimportanttorecognizethatthereismeritintheSmartGridconceptandshouldbeviewedinlightofitbringingevolutionaryratherthanrevolutionarychangesintheindustry.

Ingeneral,thismarkettrendrequiresanewapproachtosystemdesign,re-designandnetworkintegrationandimplementationneeds.Inaddition,utilitieswillhavetodevelopwell-definedengineeringandconstructionstandardsandoperationandmaintenancepracticesaddressinghighpenetrationlevelsofDG.

2DGtechnologylandscape

DGsystemscanutilizeeitherwell-establishedconventionalpowergenerationtechnologiessuchaslow/hightemperaturefuelcells,diesel,combustionturbines,combinedcycleturbines,low-headhydroorotherrotatingmachines,renewableenergytechnologiesincludingPV,concentratedPV(CPV),solarconcentrators,thin-film,solarthermalandwind/mini-windturbinesortechnologiesthatareemergingonthemarket(e.g.tidal/wave,etc.).EachoftheDGtechnologieshasitsownadvantagesanddisadvantageswhichneedtobetakenintoconsiderationduringtheselectionprocess.

3DRinterconnectionrequirements

DRinterconnectiondesignandengineeringdetailsdependonthespecificinstallationsize(kWvs.MW);however,theoverallcomponentsoftheinstallationshouldincludethefollowing:

1)DGprimemover(orprimeenergysource)anditspowerconverter.

2)Interface/step-uptransformer.

3)Grounding(whenneeded—groundingtypedependsonutilityspecificsystemequirements).

4)Microprocessorprotectiverelaysfor:

①Three-,single-phasefaultdetectionandDGoverload.

②Islandingandabnormalsystemconditionsdetection.

③Voltageandcurrentunbalancesdetection.

④Undesirablereversepowerdetection.

⑤Machine-basedDGsynchronization.

5)Disconnectswitchesand/orswitchgear(s).

6)Metering,controlanddataloggingequipment.

7)Communicationlink(s)fortransfertripanddispatchcontrolfunctions(whenneeded).

4ImpactofDRintegrationand“penetration”level

IntegrationofDGmayhaveanimpactonsystemperformance.Thisimpactcanbeassessedbasedon:

1)SizeandtypeofDGdesign:

powerconvertertype,unitrating,unitimpedance,protectiverelayfunctions,interfacetransformer,grounding,etc.

2)TypeofDGprimemover:

wind,PV,ICE,CT,etc.

3)IntendedDGoperatingmode(s):

loadshaving,base-loadCHP,powerexportmarket,Volt-Varcontrol,etc.

4)Interac

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1