自动控制设计自动控制原理课程设计.docx

上传人:b****1 文档编号:551045 上传时间:2022-10-11 格式:DOCX 页数:10 大小:181.25KB
下载 相关 举报
自动控制设计自动控制原理课程设计.docx_第1页
第1页 / 共10页
自动控制设计自动控制原理课程设计.docx_第2页
第2页 / 共10页
自动控制设计自动控制原理课程设计.docx_第3页
第3页 / 共10页
自动控制设计自动控制原理课程设计.docx_第4页
第4页 / 共10页
自动控制设计自动控制原理课程设计.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

自动控制设计自动控制原理课程设计.docx

《自动控制设计自动控制原理课程设计.docx》由会员分享,可在线阅读,更多相关《自动控制设计自动控制原理课程设计.docx(10页珍藏版)》请在冰豆网上搜索。

自动控制设计自动控制原理课程设计.docx

自动控制设计自动控制原理课程设计

自动控制原理课程设计

本课程设计得目得着重于自动控制基本原理与设计方法得综合实际应用。

主要内容包括:

古典自动控制理论(PID)设计、现代控制理论状态观测器得设计、自动控制MATLAB仿真。

通过本课程设计得实践,掌握自动控制理论工程设计得基本方法与工具。

1内容

某生产过程设备如图1所示,由液容为C1与C2得两个液箱组成,图中Q为稳态液体流量,为液箱A输入水流量对稳态值得微小变化,为液箱A到液箱B流量对稳态值得微小变化,为液箱B输出水流量对稳态值得微小变化,为液箱A得液位稳态值,为液箱A液面高度对其稳态值得微小变化,为液箱B得液位稳态值,为液箱B液面高度对其稳态值得微小变化,分别为A,B两液槽得出水管液阻。

设为调节阀开度。

已知液箱A液位不可直接测量但可观,液箱B液位可直接测量。

图1某生产过程示意图

要求

1.建立上述系统得数学模型;

2.对模型特性进行分析,时域指标计算,绘出bode,乃示图,阶跃反应曲线

3.对B容器得液位分别设计:

P,PI,PD,PID控制器进行控制;

4.对原系统进行极点配置,将极点配置在-1+j与-1-j;(极点可以不一样)

5.设计一观测器,对液箱A得液位进行观测(此处可以不带极点配置);

6.如果要实现液位h2得控制,可采用什么方法,怎么更加有效?

试之。

用MATLAB对上述设计分别进行仿真。

(提示:

流量Q=液位h/液阻R,液箱得液容为液箱得横断面积,液阻R=液面差变化/流量变化。

2双容液位对象得数学模型得建立及MATLAB仿真过程一、对系统数学建模

如图一所示,被控参数得动态方程可由下面几个关系式导出:

液箱A:

液箱B:

 

消去中间变量,可得:

式中,——两液槽得容量系数

——两液槽得出水端阻力

——第一个容积得时间常数

——第二个容积得时间常数

_双容对象得放大系数

其传递函数为:

二.对模型特性进行分析,绘出bode,奈氏图,阶跃反应曲线

当输入为阶跃响应时得Matlab仿真:

令T1=T2=6;K=1

单位阶跃响应得MATLAB程序:

num1=[1];den1=[36121];

G1=tf(num1,den1);

figure

(1);

step(G1);

xlabel('时间(sec)');ylabel('输出响应');title('二阶系统单位阶跃响应');

step(G1,100);

运行结果如下:

阶跃反应曲线:

图1

c(∞)=1;c(tp)=1;tp=45、5s;td=10s;ts=45、5s;

最大超调量:

δ(tp)=[c(tp)c(∞)]/c(∞)*100%=0%

稳态误差分析:

开环传递函数,稳态误差;

用MATLAB绘制得奈氏图如下图2所示,其程序如下:

nyquist([1],conv([61],[61]))

图2

在工程实践中,一般希望正相角裕度r为45~60,增益裕度KdB,即K。

当系统为单位负反馈时得Bode图:

用MATLAB绘制得奈氏图如下图3所示,其程序如下:

sys=tf([1],conv([61],[61]));margin(sys);figure

图3

三:

对B容器得液位分别设计:

P,PI,PD,PID控制器进行控制

PID控制得原理与特点

(1)P控制:

取P=9;I=0;D=0;

(2)PI控制:

P=6,I=0、4,D=0;

(3)PD控制:

P=9,I=0,D=5;

(4)PID控制:

P=5,I=0、3,D=4;

四.系统极点配置在1+j;1j

根据传递函数

得微分方程

得状态方程

输出:

极点配置:

令K=1;T1=T2=2;

用MATLAB确定状态反馈矩阵K,使得系统闭环极点配置在(1+j,1j),程序如下:

A=[01;0、251];

B=[0;1];

P=[1+j;1j];

K=place(A,B,P)

运行结果为

K=

1.75001、0000

仿真:

仿真图

五.设计一观测器,对液箱A得液位进行观测

●建立状态观测器:

根据传递函数

得微分方程

得状态方程

输出:

全维观测器得建立:

令,得

期望特征式:

对比1式与2式,得

 

所以全维状态观测器得方程就是

本实验中,需观测得状态为水箱A溶液得液位,

建立数学模型

R1=R2=1;c1=c2=1;

 

令状态观测器得极点为(6j,6+j)

设计此给定系统状态观测器得MATLAB程序如下

A=[10;11];

B=[10];

C=[11];

A1=A';B1=C';C1=B';

P=[6j6+j];

K=acker(A1,B1,P);

G=K'

运行结果为

G=

26

16

仿真:

仿真图:

六、如果要实现液位h2得控制,可采用什么方法,怎么更加有效?

试之

前馈反馈控制方法

这种调节系统中要直接测量干扰量得变化,液位h2作为反馈量,流量Q作为前馈量,可以克服流量Q干扰量得偏差,同时可以加快控制得速度,使调节更加及时有效。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1