航空材料论文范文.docx

上传人:b****3 文档编号:5456351 上传时间:2022-12-16 格式:DOCX 页数:13 大小:29.98KB
下载 相关 举报
航空材料论文范文.docx_第1页
第1页 / 共13页
航空材料论文范文.docx_第2页
第2页 / 共13页
航空材料论文范文.docx_第3页
第3页 / 共13页
航空材料论文范文.docx_第4页
第4页 / 共13页
航空材料论文范文.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

航空材料论文范文.docx

《航空材料论文范文.docx》由会员分享,可在线阅读,更多相关《航空材料论文范文.docx(13页珍藏版)》请在冰豆网上搜索。

航空材料论文范文.docx

航空材料论文范文

航空材料论文范文

1.

航空复合材料概

2

1.1

复合材

..2

1.2

复合材料在飞行器上的应

3

1.3C/C复合材料在高超飞行器中应

2.C/C复合材

5

2.1概

5

2.2碳/碳复合材料的组成及微观结

5

2.3碳/碳复合材料的性

6

2.3.1物理性

厶匕

2.3.2力学性厶匕

6

2.3.3

热学及烧蚀性

厶匕

6

2.3.4

摩擦磨损性

厶匕

7

2.4

碳/碳复合材料制备及加

7

2.4.1

液相浸渍工

7

2.4.2化学气相沉积工

7

2.4.3

碳/碳复合材料的切削加

8

2.5

碳/碳复合材料的应

8

2.5.1

固体火箭发动机喷管上的应

8

2.5.2

刹车领域的应

2.6碳/碳复合材料的氧化及防氧

9

2.6.1

碳/碳改性抗氧

9

2.6.2

碳/碳涂层防氧

9

10

航空复合材料与碳/碳复合材料概述摘要:

复合材料是由两种或两种以上的不同材料、不同形状、不同性质的物质复合形成的新型材料。

一般由基体材料和功能组元所组成。

复合材料可经设计,即通过对原材料的选择、各组分布设计和工艺条件的保证等,使原组分材料优点互补,因而呈现了出色的综合性能。

C/C复合材料是目前新材料领域重点研究和开发的一种新型超高温热结构材料,密度小、比强度大、线膨胀系数低(仅为金属的1/5~1/10)、热导率高、耐烧蚀、耐磨性能良好。

特别是C/C复合材料在1000C~2300C时强度随温度升高而升高,是理想的航空航天及其它工业领域的高温材料。

关键词:

航空复合材料,碳/碳复合材料

1.航空复合材料概述

1.1复合材料

复合材料是由两种或两种以上的不同材料、不同形状、不同性质的物质复合形成的新型材料。

一般由基体材料和功能组元所组成。

复合材料可经设计,即通过对原材料的选择、各组分布设计和工艺条件的保证等,使原组分材料优点互补,因而呈现了出色的综合性能。

早期飞机为复合材料,由木质框架,金属丝支架和织物组成。

焊接钢质框架从20世纪20年代早期开始代替木质框架。

轻质铝壳结构则从20世纪30年代开始采用。

到20世纪50年代完全转变成“全金属”飞机的过程完成。

随着玻璃纤维、凯夫拉尔、碳纤维等复合材料的发展,并且早期复合材料结构的使用预示着复合材料运用的辉煌。

在飞机上翼尖小翼、雷达罩和尾锥上少量玻璃纤维增强塑料的使用标志着飞机设计上复合材料的重新应用。

从那时起复合材料在这些部件上的成功应用导致在每一种新机型上复合材料应用的增加。

波音747使用了超过10000平方英尺表面的复合材料结构。

在过去几年当中先进复合材料技术运用

到诸如大翼面板、地板梁等主要结构上。

显而易见对基本复合材料结构和复合材料结构修理技术的理解对于航空公司人员来说是多么重要。

先进复合材料优异的力学性能和明显的减重效果在航空器领域得到广泛认可。

随着飞机性能的不断提高,作为现代飞机结构材料的复合材料的应用已由小型、简单的次承力构件发展到大型、复杂的主承力构件。

在飞机机翼、机身、操纵面、起落架舱门、蒙皮、安定面、雷达罩等部件多处使用[1]。

复合材料的优点:

(1)相对不易腐蚀;

2)不会产生金属疲劳;

3)可设计载荷;

(4)可减少连接部件(同步成型);

(5)减重,节油。

复合材料的缺点:

(1)原料高成本(增强纤维,如CF);

(2)制造维修人力成本高,耗时;

(3)力学性能受温度湿度影响高;

(4)检测损伤难度大;

(5)可导致铝等电位低的金属腐蚀。

1.2复合材料在飞行器上的应用

先进复合材料技术的实际应用在飞行器设计与制造中具有重要的地位。

这是因为复合材料的许多优异性能,如比强度和比模量高,优良的抗疲劳性能,以及独特的材料可设计性等,都是飞行器结构盼望的理想性能。

高性能飞行器要求结构重量轻,从而可以减少燃料消耗,延长留空时间,飞得更高更快或具有更好的机动性;也可以安装更多的设备,提高飞行器的综合性能。

减轻结构的重量可大大节约飞机的使用成本,取得明显的经济效

益。

据国外有关资料报告,先进战斗机每减重1kg,就可节约1760

美元。

西方国家在很短的时间内就实现了从非受力件和次受力件到主受力件应用的过渡,无论是用量还是技术覆盖面都有了很大的发展。

目前正在研制的战斗机中所使用的复合材料可

占飞机结构总重量的50%以上。

飞机隐身技术的发展与应用,进一步扩大了对复合材料技术的需求。

在继民用飞机中出现全复合材料飞机(如LearFan2100,Starship和Vayager)之后又出现了全复合材料机身的隐身轰炸机B2。

此外,也只有采用了复合材料,才使前掠翼得以在X-29上实现[2]。

目前,国内飞机型号应用复合材料的比例越来越高,应用复合材料的部件越来越大,复合材料构件的结构也越来越复杂,复合材料构件已经逐步从次承力构件到主承力构件转变,复合材料的垂直安定面、水平尾翼、前机身、舱门、整流罩等构件已在多种型号飞机上使用并

形成了批量生产能力。

机翼、旋翼等主承力构件也已经在小批量生产

[3]。

国内复合材料在飞机上应用最多的是新研制的中、高空长航时无人机,其机体复合材料的使用量达到70%,机翼翼展18米,为全复合材料结构;其中,机翼整体盒段运用设计工艺一体化技术,将机翼的前、后梁,上蒙皮和所有中间肋整体共固化成型,在复合材料应用技术上有所突破。

在自行设计制造的直升机上,应用复合材料最多的是Z10专用武装直升机,其主桨叶、尾桨叶和尾段为全复合材料结构。

1.3C/C复合材料在高超飞行器中应用

碳/碳(C/C)复合材料是一种新型高性能结构、功能复合材料,具有高强度、高模量、高断裂韧性、高导热、隔热优异和低密度等优异特性,在机械、电子、化工、冶金和核能等领域中得到广泛应用,并且在航天、航空和国防领域中的关键部件上大量应用。

我国对C/C复合材料的研究和开发主要集中在航天、航空等高技术领域,较少涉足民用高性能、低成本C/C复合材料的研究。

导弹、载人飞船、航天飞机等,在再入环境时飞行器头部受到强激波,对头部产生很大的压力,其最苛刻部位温度可达2760C,所以必须选择能够承受再入环境苛刻条件的材料。

设计合理的鼻锥外形

和选材,能使实际流入飞行器的能量仅为整个热量1%-10%左右。

导弹的端头帽,也要求防热材料在再入环境中烧蚀量低,且烧蚀均匀对称,同时希望它具有吸波能力、抗核爆辐射性能和全天候使用的性能。

三维编织的C/C复合材料,其石墨化后的热导性足以满足弹头再入时由160C至气动加热至1700C时的热冲击要求,可以预防弹头鼻锥的热

应力过大引起的整体破坏;其低密度可提高导弹弹头射程,已在很多战略导弹弹头上得到应用。

除了导弹的再入鼻锥,C/C复合材料还可作热防护材料用于航天飞机。

C/C复合材料在涡轮机及燃气系统(已成功地用于燃烧室、导管、阀门)中的静止件和转动件方面有着潜在的应用前景,例如用于叶片和活塞,可明显减轻重量,提高燃烧室的温度,大幅度提高热效率。

美国F22、F100、F119军机和—航空发动机上已经采用碳/碳制作航空发动机燃烧室、导向器、内锥体、尾喷管鱼鳞片和密封片及声挡板等。

2.C/C复合材料

2.1概述

C/C复合材料是目前新材料领域重点研究和开发的一种新型超高温热结构材料,密度小、比强度大、线膨胀系数低(仅为金属的1/5~1/10)、热导率高、耐烧蚀、耐磨性能良好。

特别是C/C复合材料在1000C~2300C时强度随温度升高而升高,是理想的航空航天及其它工业领域的高温材料。

2.2碳/碳复合材料的组成及微观结构

碳/碳复合材料的组成有两大部分:

碳纤维和基体碳。

碳纤维织物结构形式

A:

2D平纹;b:

2D8H缎纹;c:

3D径向编织

d:

3D;e:

4D;f:

5D

材料科学与工程学院

0905010437

xx年11月18日

航天航空用热固性材料

0905010437文水武

摘要:

本文综述了热固性材料的特性及应用领域进行了评价和探讨,同时对航空航天先进复合材料的发展前景进行了展望。

关键词:

功能材料热固性航空航天事业固性材料

环氧树脂是优良的反应固化型性树脂。

它与高性能纤维:

PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,

便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。

本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题

1热固性塑料的概述

指在一定条件下(如加热、加压)下能通过化学反应固化成不熔不溶性的塑料。

常用的热固性塑料有酚醛塑料、聚氨酯塑料、环氧塑料、不饱和聚酯塑料、呋喃塑料、有机硅树脂、丙烯基树脂等及其改性树脂为机体制成的塑料。

第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。

正是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。

这种材料称为热固性塑料。

热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三度的网状结构,不仅不能再熔触,在溶剂中也不能溶解。

酚醛、服醛、三聚氰胺甲醛、环氧、不饱和聚酯、有机硅等塑料,都是热固性塑料。

主要用于隔热、耐磨、绝缘、耐高压电等在恶劣环境中使用的塑料,大部分是热固性塑料,最常用的应该是炒锅锅把手和高低压电KB器。

2树脂基复合材料的发展史

树脂基复合材料(ResinMatrixComposite)也称纤维增强塑料(FiberReinforcedPlastics),是技术比较成熟且应用最为广泛的一类复合材料。

这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。

以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。

树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。

1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。

__研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。

1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。

60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。

在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。

1961年片状模塑料(SheetMoldingCompound,简称SMC在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。

1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模

化生产。

拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破。

在70年代树脂反应注射成型(ReactionInjection

Molding,简称RIM)和增强树脂反应注射成型(Reinforced

ReactionInjectionMolding,简称RRIM两种技术研究成功,现

已大量用于卫生洁具和汽车的零件生产。

1972年美国PPG公司研究成功热塑性片状模型料成型技术,1975年投入生产。

80年代又发展了离心浇铸成型法,英国曾使用这种工艺生产10m长的复合材料电线杆、大口径受外压的管道等。

从上述可知,新生产工艺的不断出现推动着聚合物复合材料工业的发展。

进入20世纪70年代,对复合材料的研究发迹了仅仅采用玻璃纤维增强树脂的局面,人们一方面不断开辟玻纤-树脂复合材料的新用途,同时也开发了一批如碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶纤维、高密度聚乙烯纤维等高性能增强材料,并使用高性能树脂、金属与陶瓷为基体,制成先进复合材料(AdvancedCompositeMaterials,简称ACM。

这种先进复合材料具有比玻璃纤维复合材料更好的性能,是用于飞机、火箭、卫星、飞船等航空航天飞行器的理想材料。

3国防、军工及航空航天用树脂基复合材料

据有关资料报导,航天飞行器的质量每减少1干克,就可使运载火箭减轻500千克,而一次卫星发射费用达几千万美元。

高成本的因素,使得结构材料质轻,高性能显得尤为重要。

利用纤维缠绕工艺制造的环氧基固体发动机罩耐腐蚀、耐高温、耐辐射,而且密度小、刚性好、强度高、尺寸稳定。

再如导弹弹头和卫星整流罩、宇宙飞船的防热材料、太阳能电池阵基板都采用了环氧基及环氧酚醛基纤维增强材料来制造。

处于航天航空飞行及其安全的考虑所需,作为结构材料应具有轻质高强、高可靠性和稳定性,环氧碳纤维复合材料成为不可缺少的材料。

高性能环氧复合材料采用的增强材料主要是碳纤维(CF)以及CF和芳纶纤维(K-49)或高强玻璃纤维(S-GF)的混杂纤维。

所用基体材料环氧树脂约占高性能复合材料树脂用量的90%左右。

高性能复合材料成型工艺多采用单向预浸料干法铺层,热压罐固化成型。

高性能环氧复合材料已广泛应用在各种飞机上。

以美国为

例,20世纪60年代就开始应用硼/环氧复合材料作飞机蒙皮、操作面等。

由于硼纤维造价太贵,70年代转向碳/环氧复合材料,并得到快速发展。

大致可分为三个阶段。

第一阶段应用于受力不大的构件,如各类操纵面、舵面、扰流片、副翼、口盖、阻力板、起落架舱门、发动机罩等次结构上。

第二阶段应用于承力大的结构件上,如安定面、全动平尾和主受力结构机翼等。

第三阶段应用于复杂受力结构,如机身、中央翼盒等。

一般可减重20%-30%目前军机上复合材料用量已达结构重量的25%左右,占到机体表面积的80%。

高性能环氧复合材料在国外军机和民机上的应用实例较多。

我国于1978年首次将碳-玻/环氧复合材料用于强-5型飞机的进气道侧壁。

据有关会专家介绍,20世纪80年代在多种军机上成功地将C/EP用作垂直安定面、舵面、全动平尾和机翼受力盒段壁板等主结构件。

4国内外发展现状及趋势

航天高新技术对航天先进复合材料的要求越来越高,促使先进复合材料向几个方向发展:

①高性能化,包括原材料高性能化和制品高性能化。

如用于航空航天产品的碳纤维由前几年普遍使用的T300已发展到T7O0T800甚至T1000。

而一般环氧树脂也逐步被韧性更好的、耐温更高的增韧环氧树脂、双马树脂和聚酰亚胺树脂等取代;对复合材料制品也提出了轻质、耐磨损、耐腐蚀、耐低温、耐高温、抗氧化等要求。

②低成本化,低成本生产技术包括原材料、复合工艺和质量控制等各个方面。

③多功能化,航天先进复合材料正由单纯结构型逐步实现结构与功能一体化,即向多功能化的方向发展。

碳纤维增强复合材料(CFRP是目前最先进的复合材料之一。

它以

其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点,广泛用作结构材料及耐高温抗烧蚀材料,是其它纤维增强复合材料所无法比拟的。

5用于固体发动机喷管的耐热树脂基体

耐高温结构复合材料用的新型热固性树脂一般指芳杂环高聚物,如聚酰亚

飞行器及其动力装置、附件、仪表所用的各类材料,是航空航天工程技术发展的决定性因素之一。

航空航天材料科学是材料科学中富有开拓性的一个分支。

飞行器的设计不断地向材料科学提出新的课题,推动航空航天材料科学向前发展;各种新材料的出现也给飞行器的设计提供新的可能性,极大地促进了航空航天技术的发展。

航空航天材料的进展取决于下列3个因素:

①材料科学理论的新发现:

例如,铝合金的时效强化理论导致硬铝合金的发展;高分子材料刚性分子链的定向排列理论导致高强度、高模量芳纶有机纤维的发展。

②材料加工工艺的进展:

例如,古老的铸、锻技术已发展成为定向凝固技术、精密锻压技术,从而使高性能的叶片材料得到实际应用;复合材料增强纤维铺层设计和工艺技术的发展,使它在不同的受力方向上具有最优特性,从而使复合材料具有“可设计性”,并为它的应用开拓了广阔的前景;热等静压技术、超细粉末制造技术等新型工艺技术的成就创造出具有崭新性能的一代新型航空航天材料和制件,如热等静压的粉末冶金涡轮盘、高效能陶瓷制件等。

③材料性能测试与无损检测技术的进步:

现代电子光学仪器已经可以观察到材料的分子结构;材料机械性能的测试装置已经可以模拟飞行器的载荷谱,而且无损检测技术也有了飞速的进步。

材料性能测试与无损检测技术正在提供越来越多的、更为精细的信息,为飞行器的设计提供更接近于实际使用条件的材料性能数据,为生产提供保证产品质量的检测手段。

一种新型航空航天材料只有在这三个方面都已经发展到成熟阶段,才有可能应用于飞行器上。

因此,世界各国都把航空航天材料放在优先发展的地位。

中国在50年代就创建了北京航空材料研究所和北京航天材料工艺研究所,从事航空航天材料的应用研究。

简况18世纪60年代发生的欧洲工业革命使纺织工业、冶金工业、机器制造工业得到很大的发展,从而结束了人类只能利用自然材料向天空挑战的时代。

1903年美国莱特兄弟制造出第一架装有活塞式航空发动机的飞机,当时使用的材料有木材(占47%),钢(占35%)和布(占18%),飞机的飞行速度只有16公里/时。

1906年德国冶金学家发明了可以时效强化的硬铝,使制造全金属结构的飞机成为可能。

40年代出现的全金属结构飞机的承载能力已大大增加,飞行速度超过了600公里/时。

在合金强化理论的基础上发展起来的一系列高温合金使得喷气式发动机的性能得以不断提高。

50年代钛合金的研制

成功和应用对克服机翼蒙皮的“热障”问题起了重大作用,飞机的性能大幅度提高,最大飞行速度达到了3倍音速。

40年代初期出现的德国V-2火箭只使用了一般的航空材料。

50年代以后,材料烧蚀防热理论的出现以及烧蚀材料的研制成功,解决了弹道导弹弹头的再入防热问题。

60年代以来,航空航天材料性能的不断提高,一些飞行器部件使用了更先进的复合材料,如碳纤维或硼纤维增强的环氧树脂基复合材料、金属基复合材料等,以减轻结构重量。

返回型航天器和航天飞机在再入大气层时会遇到比弹道导弹弹头再入时间长得多的空气动力加热过程,但加热速度较慢,热流较小。

采用抗氧化性能更好的碳-碳复合材料陶瓷隔热瓦

等特殊材料可以解决防热问题。

分类飞行器发展到80年代已成为机械加电子的高度一体化的产品。

它要求使用品种繁多的、具有先进性能的结构材料和具有电、光、热和磁等多种性能的功能材料。

航空航天材料按材料的使用对象不同可分为飞机材料、航空发动机材料、火箭和导弹材料和航天器材料等;按材料的化学成分不同可分为金属与合金材料、有机非金属材料、无机非金属材料和复合材料。

材料应具备的条件用航空航天材料制造的许多零件往往需要在超高温、超低温、高真空、高应力、强腐蚀等极端条件下工作,有的

则受到重量和容纳空间的限制,需要以最小的体积和质量发挥在通常情况下等效的功能,有的需要在大气层中或外层空间长期运行,不可能停机检查或更换零件,因而要有极高的可靠性和质量保证。

不同的工作环境要求航空航天材料具有不同的特性。

高的比强度和比刚度对飞行器材料的基本要求是:

材质轻、强度高、刚度好。

减轻飞行器本身的结构重量就意味着增加运载能力,提高机动性能,加大飞行距离或射程,减少燃油或推进剂的消耗。

比强度和比刚度是衡量航空航天材料力学性能优劣的重要参数:

比强度=/

比刚度=/式中[kg2][kg2]为材料的强度,为材料的弹性模量,为材料的比重。

飞行器除了受静载荷的作用外还要经受由于起飞和降落、发动机振动、转动件的高速旋转、机动飞行和突风等因素产生的交变载荷,因此材料的疲劳性能也受到人们极大的重视。

优良的耐高低温性能飞行器所经受的高温环境是空气动力加热、发动机燃气以及太空中太阳的辐照造成的。

航空器要长时间在空气中飞行,有的飞行速度高达3倍音速,所使用的高温材料要具有良好的高温持久强度、蠕变强度、热疲劳强度,在空气和腐蚀介质中要有高的抗氧化性能和抗热腐蚀性能,并应具有在高温下长期工作的组织结构稳定性。

火箭发动机燃气温度可达3000[2oc]以上,喷射速度可达十余个马赫数,而且固体火箭燃气中还夹杂有固体粒子,弹道导弹头部在再入大气层时速度高达20个马赫数以上,温度高达上万摄氏度,有时还会受到粒子云的侵蚀,因此在航天技术领域中所涉及的高温环境往往同时包括高温高速气流和粒子的冲刷。

在这种条件下需要利用材料所具有的熔解热、蒸发热、升华热、分解热、化合热以及高温粘性等物理性能来设计高温耐烧蚀材料和发冷却材料以满足高温环境的要求。

太阳辐照会造成在外层空间运行的卫星和飞船表面温度的交变,一般采用温控涂层和隔热材料来解决。

低温环境的形成大自然和低温推进剂。

飞机在同温层以亚音速飞行时表面温度会降到-50[2oc]左右,极圈以内各地域的严冬会使机场环境温度下降到-40[2oc]以下在这种环境下要求金属构件或橡胶轮胎不产生脆化现象。

液体火箭使用液氧(沸点为-183[2oc])和液氢(沸点为-253[2oc])作推进剂,这为材料提出了更严峻的环境条件。

部分金属材料和绝大多数高分子材料在这种条件下都会变

脆。

通过发展或选择合适的材料,如纯铝和铝合金、钛合金、低温钢、聚四氟乙烯、聚酰亚胺和全氟聚醚等,才能解决超低温下结构承受载荷的能力和密封等问题。

耐老化和耐腐蚀各种介质和大气环境对材料的作用表现为腐蚀和老化。

航空航天材料接触的介质是飞机用燃料(如汽油、煤油)、火箭用推进剂(如浓硝酸、四氧化二氮、肼类)和各种润滑剂、液压油等。

其中多数对金属和非金属材料都有强烈的腐蚀作用或溶胀作用。

在大气中受太阳的辐照、风雨的侵蚀、地下潮湿环境中长期贮存时产生的霉菌会加速高分子材料的老化过程。

耐腐蚀性能、抗老化性能、抗霉菌性能是航空航天材料应该具备的良好特性。

适应空间环境空间环境对材料的作用主要表现为高真空(1.33X1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 兵器核科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1