生物必修二提纲范文.docx

上传人:b****4 文档编号:5416525 上传时间:2022-12-16 格式:DOCX 页数:21 大小:32.22KB
下载 相关 举报
生物必修二提纲范文.docx_第1页
第1页 / 共21页
生物必修二提纲范文.docx_第2页
第2页 / 共21页
生物必修二提纲范文.docx_第3页
第3页 / 共21页
生物必修二提纲范文.docx_第4页
第4页 / 共21页
生物必修二提纲范文.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

生物必修二提纲范文.docx

《生物必修二提纲范文.docx》由会员分享,可在线阅读,更多相关《生物必修二提纲范文.docx(21页珍藏版)》请在冰豆网上搜索。

生物必修二提纲范文.docx

生物必修二提纲范文

第一章遗传因子的发现

第一节孟德尔豌豆杂交试验

(一)

1.孟德尔之所以选取豌豆作为杂交试验的材料是由于:

(1)豌豆是自花传粉植物,且是闭花授粉的植物;

(2)豌豆花较大,易于人工操作;

(3)豌豆具有易于区分的性状。

2.遗传学中常用概念及分析

(1)性状:

生物所表现出来的形态特征和生理特性。

相对性状:

一种生物同一种性状的不同表现类型。

举例:

兔的长毛和短毛;人的卷发和直发等。

性状分离:

杂种后代中,同时出现显性性状和隐性性状的现象。

如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。

显性性状:

在DD×dd杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。

决定显性性状的为显性遗传因子(基因),用大写字母表示。

如高茎用D表示。

隐性性状:

在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。

决定隐性性状的为隐性基因,用小写字母表示,如矮茎用d表示。

(2)纯合子:

遗传因子(基因)组成相同的个体。

如DD或dd。

其特点纯合子是自交后代全为纯合子,无性状分离现象。

杂合子:

遗传因子(基因)组成不同的个体。

如Dd。

其特点是杂合子自交后代出现性状分离现象。

(3)杂交:

遗传因子组成不同的个体之间的相交方式。

如:

DD×ddDd×ddDD×Dd等。

自交:

遗传因子组成相同的个体之间的相交方式。

如:

DD×DDDd×Dd等

测交:

F1(待测个体)与隐性纯合子杂交的方式。

如:

Dd×dd

正交和反交:

二者是相对而言的,

如甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交;

如甲(♂)×乙(♀)为正交,则甲(♀)×乙(♂)为反交。

3.杂合子和纯合子的鉴别方法

若后代无性状分离,则待测个体为纯合子

测交法

若后代有性状分离,则待测个体为杂合子

若后代无性状分离,则待测个体为纯合子

自交法

若后代有性状分离,则待测个体为杂合子

4.常见问题解题方法

(1)如后代性状分离比为显:

隐=3:

1,则双亲一定都是杂合子(Dd)

即Dd×Dd3D_:

1dd

(2)若后代性状分离比为显:

隐=1:

1,则双亲一定是测交类型。

即为Dd×dd1Dd:

1dd

(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。

即DD×DD或DD×Dd或DD×dd

5.分离定律

其实质就是在形成配子时,等位基因随减数第一次分裂后期同源染色体的分开而分离,分别进入到不同的配子中。

第2节孟德尔豌豆杂交试验

(二)

1.两对相对性状杂交试验中的有关结论

(1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。

(2)F1减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非等位基因)自由组合,且同时发生。

(3)F2中有16种组合方式,9种基因型,4种表现型,比例9:

3:

3:

1

YYRR1/16

YYRr2/16

亲本类型

双显(Y_R_)YyRR2/169/16黄圆

YyRr4/16

纯隐(yyrr)yyrr1/161/16绿皱

YYrr1/16

重组类型

单显(Y_rr)YYRr2/163/16黄皱

yyRR1/16

单显(yyR_)yyRr2/163/16绿圆

注意:

上述结论只是符合亲本为YYRR×yyrr,但亲本为YYrr×yyRR,F2中重组类型为10/16,亲本类型为6/16。

2.常见组合问题

(1)配子类型问题

如:

AaBbCc产生的配子种类数为2x2x2=8种

(2)基因型类型

如:

AaBbCc×AaBBCc,后代基因型数为多少?

先分解为三个分离定律:

Aa×Aa后代3种基因型(1AA:

2Aa:

1aa)

Bb×BB后代2种基因型(1BB:

1Bb)

Cc×Cc后代3种基因型(1CC:

2Cc:

1cc)

所以其杂交后代有3x2x3=18种类型。

(3)表现类型问题

如:

AaBbCc×AabbCc,后代表现数为多少?

先分解为三个分离定律:

Aa×Aa后代2种表现型

Bb×bb后代2种表现型

Cc×Cc后代2种表现型

所以其杂交后代有2x2x2=8种表现型。

3.自由组合定律

实质是形成配子时,成对的基因彼此分离,决定不同性状的基因自由组合。

4.常见遗传学符号

符号

P

F1

F2

×

含义

亲本

子一代

子二代

杂交

自交

母本

父本

第二章基因和染色体的关系

第一节减数分裂和受精作用

知识结构

精子的形成过程

减数分裂

卵细胞形成过程

减数分裂和受精作用

配子中染色体组合的多样性

受精作用

受精作用的过程和实质

1.正确区分染色体、染色单体、同源染色体和四分体

(1)染色体和染色单体:

细胞分裂间期,染色体经过复制成由一个着丝点连着的两条姐妹染色单体。

所以此时染色体数目要根据着丝点判断。

(2)同源染色体和四分体:

同源染色体指形态、大小一般相同,一条来自母方,一条来自父方,且能在减数第一次分裂过程中可以两两配对的一对染色体。

四分体指减数第一次分裂同源染色体联会后每对同源染色体中含有四条姐妹染色单体。

(3)一对同源染色体=一个四分体=2条染色体=4条染色单体=4个DNA分子。

2.减数分裂过程中遇到的一些概念

同源染色体:

上面已经有了

联会:

同源染色体两两配对的现象。

四分体:

上面已经有了

交叉互换:

指四分体时期,非姐妹染色单体发生缠绕,并交换部分片段的现象。

减数分裂:

是有性生殖的生物在产生成熟生殖细胞时进行的染色体数目减半的细胞分裂。

3.减数分裂

特点:

复制一次,分裂两次。

结果:

染色体数目减半,且减半发生在减数第一次分裂。

场所:

生殖器官内

4.精子与卵细胞形成的异同点

比较项目

不同点

相同点

精子的形成

卵细胞的形成

染色体复制

复制一次

第一次分裂

一个初级精母细胞(2n)产生两个大小相同的次级精母细胞(n)

一个初级卵母细胞(2n)(细胞质不均等分裂)产生一个次级卵母细胞(n)和一个第一极体(n)

同源染色体联会,形成四分体,同源染色体分离,非同源染色体自由组合,细胞质分裂,子细胞染色体数目减半

第二次分裂

两个次级精母细胞形成四个同样大小的精细胞(n)

一个次级卵母细胞(细胞质不均等分裂)形成一个大的卵细胞(n)和一个小的第二极体。

第一极体分裂(均等)成两个第二极体

着丝点分裂,姐妹染色单体分开,分别移向两极,细胞质分裂,子细胞染色体数目不变

有无变形

精细胞变形形成精子

无变形

分裂结果

产生四个有功能的精子(n)

只产生一个有功能的卵细胞(n)

精子和卵细胞中染色体数目均减半

注:

卵细胞形成无变形过程,而且是只形成一个卵细胞,卵细胞体积很大,细胞质中存有大

量营养物质,为受精卵发育准备的。

5.减数分裂和有丝分裂主要异同点

比较项目

减数分裂

有丝分裂

染色体复制次数及时间

一次,减数第一次分裂的间期

一次,有丝分裂的间期

细胞分裂次数

二次

一次

联会四分体是否出现

出现在减数第一次分裂

不出现

同源染色体分离

减数第一次分裂后期

着丝点分裂

发生在减数第二次分裂后期

后期

子细胞的名称及数目

性细胞,精细胞4个或卵1个、极体3个

体细胞,2个

子细胞中染色体变化

减半,减数第一次分裂

不变

子细胞间的遗传组成

不一定相同

一定相同

6.识别细胞分裂图形(区分有丝分裂、减数第一次分裂、减数第二次分裂)

(1)、方法(点数目、找同源、看行为)

第1步:

如果细胞内染色体数目为奇数,则该细胞为减数第二次分裂某时期的细胞。

第2步:

看细胞内有无同源染色体,若无则为减数第二次分裂某时期的细胞分裂图;若有则为减数第一次分裂或有丝分裂某时期的细胞分裂图。

第3步:

在有同源染色体的情况下,若有联会、四分体、同源染色体分离,非同源染色体自由组合等行为则为减数第一次分裂某时期的细胞分裂图;若无以上行为,则为有丝分裂的某一时期的细胞分裂图。

(2)例题:

判断下列各细胞分裂图属何种分裂何时期图。

[解析]:

甲图细胞的每一端均有成对的同源染色体,但无联会、四分体、分离等行为,且每一端都有一套形态和数目相同的染色体,故为有丝分裂的后期。

乙图有同源染色体,且同源染色体分离,非同源染色体自由组合,故为减数第一次分裂的后期。

丙图不存在同源染色体,且每条染色体的着丝点分开,姐妹染色单体成为染色体移向细胞两极,故为减数第二次分裂后期。

7.受精作用:

指卵细胞和精子相互识别、融合成为受精卵的过程。

注:

受精卵核内的染色体由精子和卵细胞各提供一半,但细胞质几乎全部是由卵细胞提供,因此后代某些性状更像母方。

意义:

通过减数分裂和受精作用,保证了进行有性生殖的生物前后代体细胞中染色体数目的恒定,从而保证了遗传的稳定和物种的稳定;在减数分裂中,发生了非同源染色体的自由组合和非姐妹染色单体的交叉互换,增加了配子的多样性,加上受精时卵细胞和精子结合的随机性,使后代呈现多样性,有利于生物的进化,体现了有性生殖的优越性。

下图讲解受精作用的过程,强调受精作用是精子的细胞核和卵细胞的细胞核结合,受精卵中的染色体数目又恢复到体细胞的数目。

8.配子种类问题

由于染色体组合的多样性,使配子也多种多样,根据染色体组合多样性的形成的过程,所以配子的种类可由同源染色体对数决定,即含有n对同源染色体的精(卵)原细胞产生配子的种类为2n种。

9.植物双受精(补充)

被子植物特有的一种受精现象。

花粉被传送到雌蕊柱头后,长出花粉管,伸达胚囊,管的先端破裂,放出两精子,其中之一与卵结合,形成受精卵,另一精子与两个极核结合,形成胚乳核;经过一系列的发展过程,前者形成胚,后者形成胚乳,这种双重受精的现象称双受精。

注:

其中两个精子的基因型相同,胚珠中极核与卵细胞基因型相同。

例:

一株白粒玉米(aa)接受红粒玉米(AA)的花粉,所结的种子的胚细胞、胚乳细胞基因型依次是:

Aa、Aaa

第二节基因在染色体上

1.萨顿假说推论:

基因在染色体上,也就是说染色体是基因的载体。

因为基因和染色体行为存在着明显的平行关系。

2.、基因位于染色体上的实验证据

果蝇杂交实验分析

3.一条染色体上一般含有多个基因,且这多个基因在染色体上呈线性排列

4.基因的分离定律的实质

基因的自由组合定律的实质

第三节伴性遗传

1.伴性遗传的概念

2.人类红绿色盲症(伴X染色体隐性遗传病)

特点:

⑴男性患者多于女性患者。

⑵交叉遗传。

即男性→女性→男性。

⑶一般为隔代遗传。

2.抗维生素D佝偻病(伴X染色体显性遗传病)

特点:

⑴女性患者多于男性患者。

⑵代代相传。

4、伴性遗传在生产实践中的应用

3、人类遗传病的判定方法

口诀:

无中生有为隐性,有中生无为显性;隐性看女病,女病男正非伴性;显性看男病,男病女正非伴性。

第一步:

确定致病基因的显隐性:

可根据

(1)双亲正常子代有病为隐性遗传(即无中生有为隐性);

(2)双亲有病子代出现正常为显性遗传来判断(即有中生无为显性)。

第二步:

确定致病基因在常染色体还是性染色体上。

①在隐性遗传中,父亲正常女儿患病或母亲患病儿子正常,为常染色体上隐性遗传;

②在显性遗传,父亲患病女儿正常或母亲正常儿子患病,为常染色体显性遗传。

③不管显隐性遗传,如果父亲正常儿子患病或父亲患病儿子正常,都不可能是Y染色体上的遗传病;

④题目中已告知的遗传病或课本上讲过的某些遗传病,如白化病、多指、色盲或血友病等可直接确定。

注:

如果家系图中患者全为男性(女全正常),且具有世代连续性,应首先考虑伴Y遗传,无显隐之分。

4、性别决定的方式

类型

XY型

ZW型

性别

体细胞染色体组成

2A+XX

2A+XY

2A+ZW

2A+ZZ

性细胞染色体组成

A+X

A+X

A+Y

A+Z

A+W

A+Z

生物类型

人、哺乳类、果蝇及雌雄异株植物

鸟类、蛾蝶类

第二章减数分裂和有性生殖

第一节减数分裂

一、减数分裂的概念

减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。

在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。

(注:

体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。

二、减数分裂的过程

1、精子的形成过程:

精巢(哺乳动物称睾丸)

减数第一次分裂

间期:

染色体复制(包括DNA复制和蛋白质的合成)。

前期:

同源染色体两两配对(称联会),形成四分体。

四分体中的非姐妹染色单体之间常常发生对等片段的互换。

中期:

同源染色体成对排列在赤道板上(两侧)。

后期:

同源染色体分离;非同源染色体自由组合。

末期:

细胞质分裂,形成2个子细胞。

减数第二次分裂(无同源染色体)

前期:

染色体排列散乱。

中期:

每条染色体的着丝粒都排列在细胞中央的赤道板上。

后期:

姐妹染色单体分开,成为两条子染色体。

并分别移向细胞两极。

末期:

细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。

2、卵细胞的形成过程:

卵巢

三、精子与卵细胞的形成过程的比较

精子的形成卵细胞的形成

不同点形成部位精巢(哺乳动物称睾丸)卵巢

过  程有变形期无变形期

子细胞数一个精原细胞形成4个精子一个卵原细胞形成1个卵细胞+3个极体

相同点精子和卵细胞中染色体数目都是体细胞的一半

四、注意:

(1)同源染色体①形态、大小基本相同;②一条来自父方,一条来自母方。

(2)精原细胞和卵原细胞的染色体数目与体细胞相同。

因此,它们属于体细胞,通过有丝分裂

的方式增殖,但它们又可以进行减数分裂形成生殖细胞。

(3)减数分裂过程中染色体数目减半发生在减数第一次分裂,原因是同源染色体分离并进入不同的子细胞。

所以减数第二次分裂过程中无同源染色体。

(4)减数分裂过程中染色体和DNA的变化规律

(5)减数分裂形成子细胞种类:

假设某生物的体细胞中含n对同源染色体,则:

它的精(卵)原细胞进行减数分裂可形成2n种精子(卵细胞);

它的1个精原细胞进行减数分裂形成2种精子。

它的1个卵原细胞进行减数分裂形成1种卵细胞。

五、受精作用的特点和意义

特点:

受精作用是精子和卵细胞相互识别、融合成为受精卵的过程。

精子的头部进入卵细胞,尾部留在外面,不久精子的细胞核就和卵细胞的细胞核融合,使受精卵中染色体的数目又恢复到体细胞的数目,其中有一半来自精子,另一半来自卵细胞。

意义:

减数分裂和受精作用对于维持生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异具有重要的作用。

六、减数分裂与有丝分裂图像辨析步骤:

一看染色体数目:

奇数为减Ⅱ(姐妹分家只看一极)

二看有无同源染色体:

没有为减Ⅱ(姐妹分家只看一极)

三看同源染色体行为:

确定有丝或减Ⅰ

注意:

若细胞质为不均等分裂,则为卵原细胞的减Ⅰ或减Ⅱ的后期。

同源染色体分家—减Ⅰ后期

姐妹分家—减Ⅱ后期

例:

判断下列细胞正在进行什么分裂,处在什么时期?

答案:

减Ⅱ前期减Ⅰ前期减Ⅱ前期减Ⅱ末期有丝后期减Ⅱ后期减Ⅱ后期减Ⅰ后期

答案:

有丝前期减Ⅱ中期减Ⅰ后期减Ⅱ中期减Ⅰ前期减Ⅱ后期减Ⅰ中期有丝中期

回答人的补充2010-01-2422:

49

第二节有性生殖

1.有性生殖是由亲代产生有性生殖细胞或配子,经过两性生殖细胞(如精子和卵细胞)的结合,成为合子(如受精卵)。

再由合子发育成新个体的生殖方式。

2.脊椎动物的个体发育包括胚胎发育和胚后发育两个阶段。

3.在有性生殖中,由于两性生殖细胞分别来自不同的亲本,因此,由合子发育成的后代就具备了双亲的遗传特性,具有更强的生活能力和变异性,这对于生物的生存和进化具有重要意义。

第三章遗传和染色体

第一节基因的分离定律

一、相对性状

性状:

生物体所表现出来的的形态特征、生理生化特征或行为方式等。

相对性状:

同一种生物的同一种性状的不同表现类型。

二、孟德尔一对相对性状的杂交实验

1、实验过程(看书)

2、对分离现象的解释(看书)

3、对分离现象解释的验证:

测交(看书)

例:

现有一株紫色豌豆,如何判断它是显性纯合子(AA)还是杂合子(Aa)?

相关概念

1、显性性状与隐性性状

显性性状:

具有相对性状的两个亲本杂交,F1表现出来的性状。

隐性性状:

具有相对性状的两个亲本杂交,F1没有表现出来的性状。

附:

性状分离:

在杂种后代中出现不同于亲本性状的现象)

2、显性基因与隐性基因

显性基因:

控制显性性状的基因。

隐性基因:

控制隐性性状的基因。

附:

基因:

控制性状的遗传因子(DNA分子上有遗传效应的片段P67)

等位基因:

决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。

3、纯合子与杂合子

纯合子:

由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):

显性纯合子(如AA的个体)

隐性纯合子(如aa的个体)

杂合子:

由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)

4、表现型与基因型

表现型:

指生物个体实际表现出来的性状。

基因型:

与表现型有关的基因组成。

(关系:

基因型+环境→表现型)

5、杂交与自交

杂交:

基因型不同的生物体间相互交配的过程。

自交:

基因型相同的生物体间相互交配的过程。

(指植物体中自花传粉和雌雄异花植物的同株受粉)

附:

测交:

让F1与隐性纯合子杂交。

(可用来测定F1的基因型,属于杂交)

三、基因分离定律的实质:

在减I分裂后期,等位基因随着同源染色体的分开而分离。

四、基因分离定律的两种基本题型:

正推类型:

(亲代→子代)

亲代基因型子代基因型及比例子代表现型及比例

⑴AA×AAAA全显

⑵AA×AaAA:

Aa=1:

1全显

⑶AA×aaAa全显

⑷Aa×AaAA:

Aa:

aa=1:

2:

1显:

隐=3:

1

⑸Aa×aaAa:

aa=1:

1显:

隐=1:

1

⑹aa×aaaa全隐

逆推类型:

(子代→亲代)

亲代基因型子代表现型及比例

⑴至少有一方是AA全显

⑵aa×aa全隐

⑶Aa×aa显:

隐=1:

1

⑷Aa×Aa显:

隐=3:

1

回答人的补充2010-01-2422:

57

五、孟德尔遗传实验的科学方法:

正确地选用试验材料;

分析方法科学;(单因子→多因子)

应用统计学方法对实验结果进行分析;

科学地设计了试验的程序。

六、基因分离定律的应用:

1、指导杂交育种:

原理:

杂合子(Aa)连续自交n次后各基因型比例

杂合子(Aa):

(1/2)n

纯合子(AA+aa):

1-(1/2)n(注:

AA=aa)

例:

小麦抗锈病是由显性基因T控制的,如果亲代(P)的基因型是TT×tt,则:

(1)子一代(F1)的基因型是____,表现型是_______。

(2)子二代(F2)的表现型是__________________,这种现象称为__________。

(3)F2代中抗锈病的小麦的基因型是_________。

其中基因型为______的个体自交后代会出现性状分离,因此,为了获得稳定的抗锈病类型,应该怎么做?

_______________________________________________________________________________________

答案:

(1)Tt抗锈病

(2)抗锈病和不抗锈病性状分离(3)TT或TtTt

从F2代开始选择抗锈病小麦连续自交,淘汰由于性状分离而出现的非抗锈病类型,直到抗锈病性状不再发生分离。

2、指导医学实践:

例1:

人类的一种先天性聋哑是由隐性基因(a)控制的遗传病。

如果一个患者的双亲表现型都正常,则这对夫妇的基因型是___________,他们再生小孩发病的概率是______。

答案:

Aa、Aa1/4

例2:

人类的多指是由显性基因D控制的一种畸形。

如果双亲的一方是多指,其基因型可能为___________,这对夫妇后代患病概率是______________。

答案:

DD或Dd100%或1/2

第二节基因的自由组合定律

一、基因自由组合定律的实质:

在减I分裂后期,非等位基因随着非同源染色体的自由组合而自由组合。

(注意:

非等位基因要位于非同源染色体上才满足自由组合定律)

二、自由组合定律两种基本题型:

共同思路:

“先分开、再组合”

正推类型(亲代→子代)

逆推类型(子代→亲代)

三、基因自由组合定律的应用

1、指导杂交育种:

例:

在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。

现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR,应该怎么做?

_______________________________________________________________________________________

附:

杂交育种

方法:

杂交

原理:

基因重组

优缺点:

方法简便,但要较长年限选择才可获得。

2、导医学实践:

例:

在一个家庭中,父亲是多指患者(由显性致病基因D控制),母亲表现型正常。

他们婚后却生了一个手指正常但患先天性聋哑的孩子(先天性聋哑是由隐性致病基因p控制),问:

①该孩子的基因型为___________,父亲的基因型为_____________,母亲的基因型为____________。

②如果他们再生一个小孩,则

只患多指的占________,

只患先天性聋哑的占_________,

既患多指又患先天性聋哑的占___________,

完全正常的占_________

答案:

①ddppDdPpddPp②3/8,1/8,1/8,3/8

四、性别决定和伴性遗传

1、XY型性别决定方式:

染色体组成(n对):

雄性:

n-1对常染色体+XY雌性:

n-1对常染色体+XX

性比:

一般1:

1

常见生物:

全部哺乳动物、大多雌雄异体的植物,多数昆虫、一些鱼类和两栖类。

2、三种伴性遗传的特点:

(1)伴X隐性遗传的特点:

①男>女②隔代遗传(交叉遗传)③母病子必病,女病父必病

(2)伴X显性遗传的特点:

①女>男②连续发病③父病女必病,子病母(3)伴Y遗传的特点:

①男病女不病②父→子→孙

附:

常见遗传病类型(要记住):

伴X隐:

色盲、血友病

伴X显:

抗维生素D佝偻病

常隐:

先天性聋哑、白化病

常显:

多(并)指

第三节染色体变异及其应用

一、染色体结构变异:

实例:

猫叫综合征(5号染色体部分缺失)

类型:

缺失、重复、倒位、易位(看书并理解)

二、染色体数目的变异

1、类型

个别染色体增加或减少:

实例:

21三体综合征(多1条21号染色体)

以染色体组的形式成倍增加或减少:

实例:

三倍体无子西瓜

2、染色体组:

(1)概念:

二倍体生物配子中所

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1