山东省菏泽市届高三上学期期末考试数学文试题含答案.docx

上传人:b****2 文档编号:540369 上传时间:2022-10-10 格式:DOCX 页数:28 大小:573.45KB
下载 相关 举报
山东省菏泽市届高三上学期期末考试数学文试题含答案.docx_第1页
第1页 / 共28页
山东省菏泽市届高三上学期期末考试数学文试题含答案.docx_第2页
第2页 / 共28页
山东省菏泽市届高三上学期期末考试数学文试题含答案.docx_第3页
第3页 / 共28页
山东省菏泽市届高三上学期期末考试数学文试题含答案.docx_第4页
第4页 / 共28页
山东省菏泽市届高三上学期期末考试数学文试题含答案.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

山东省菏泽市届高三上学期期末考试数学文试题含答案.docx

《山东省菏泽市届高三上学期期末考试数学文试题含答案.docx》由会员分享,可在线阅读,更多相关《山东省菏泽市届高三上学期期末考试数学文试题含答案.docx(28页珍藏版)》请在冰豆网上搜索。

山东省菏泽市届高三上学期期末考试数学文试题含答案.docx

山东省菏泽市届高三上学期期末考试数学文试题含答案

2017~2018学年度第一学期期末考试

高三文科数学试题

一、选择题:

本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知集合

,则

()

A.

B.

C.

D.

2.已知

,则复数

的共轭复数

在复平面内所对应的点位于()

A.第一象限B.第二象限C.第三象限D.第四象限

3.已知变量

的统计数据如下表:

根据上表可得回归直线方程

,据此可以预报当

时,

()

A.8.9B.8.6C.8.2D.8.1

4.若

满足

,则()

A.

B.

C.

D.

5.已知等差数列

的前

项和为

,若

,则

的公差为()

A.1B.2C.3D.4

6.若

满足不等式组

,则

的最大值为()

A.8B.6C.4D.2

7.将函数

的图像向左平移

个单位后,得到函数

的图像,则

()

A.

B.

C.

D.

8.已知

是两个平面,

是两条直线,则下列命题是真命题的是()

A.若

,则

B.若

,则

C.若

,则

D.若

,则

9.已知等边

为坐标原点)的三个顶点在抛物线

上,且

的面积为

,则

()

A.

B.3C.

D.

10.南宋数学家秦九韶在《数书九章》中提出的秦九韶算法至今仍是多项式求值比较先进的算法,已知

,下列程序框图设计的是求

的值,在

处应填的执行语句是()

A.

B.

C.

D.

11.某几何体的三视图如图所示,则该几何体的体积为()

A.

B.

C.

D.

12.已知

,若方程

有一个零点,则实数

的取值范围是()

A.

B.

C.

D.

二、填空题:

本题共4小题,每小题5分,共20分.

13.已知向量

,且

,则

上的投影为.

14.已知等比数列

中,

,则

的前6项和为.

15.已知

,则

16.已知双曲线

的左焦点为

,离心率为

.若经过

两点的直线平行于双曲线的一条渐近线,则双曲线的方程为.

三、解答题:

共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.

17.在

中,内角

所对的边分别为

,已知

.

(Ⅰ)求角

的大小;

(Ⅱ)若

的面积

,且

,求

.

18.以“你我中国梦,全民建小康”为主题、“社会主义核心价值观”为主线,为了了解

两个地区的观众对2018年韩国平昌冬奥会准备工作的满意程度,对

地区的100名观众进行统计,统计结果如下:

在被调查的全体观众中随机抽取1名“非常满意”的人是

地区的概率为0.45,且

.

(Ⅰ)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的

地区的人数各是多少?

(Ⅱ)在(Ⅰ)抽取的“满意”的观众中,随机选出3人进行座谈,求至少有两名是

地区观众的概率?

(Ⅲ)完成上述表格,并根据表格判断是否有

的把握认为观众的满意程度与所在地区有关系?

附:

.

19.如图所示,在四棱锥

中,

都是等边三角形,平面

平面

,且

.

(Ⅰ)求证:

平面

平面

(Ⅱ)

上一点,当

平面

时,三棱锥

的体积.

20.已知椭圆

的离心率为

,点

在椭圆

上.

(Ⅰ)求椭圆

的方程;

(Ⅱ)过椭圆内一点

的直线

的斜率为

,且与椭圆

交于

两点,设直线

为坐标原点)的斜率分别为

,若对任意

,存在实数

,使得

,求实数

的取值范围.

21.已知函数

.

(Ⅰ)试判断1是

的极大值点还是极小值点,并说明理由;

(Ⅱ)设

是函数

的导函数,求证:

.

请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.

22.选修4-4:

坐标系与参数方程

在平面直角坐标系

中,直线

的参数方程为

为参数),以平面直角坐标系的原点为极点,正半轴为极轴,取相同的长度单位建立极坐标系,曲线

的极坐标方程为

.

(1)求直线

和曲线

的直角坐标方程,并指明曲线

的形状;

(2)设直线

与曲线

交于

两点,

为坐标原点,且

,求

.

23.选修4-5:

不等式选讲

已知函数

(1)若不等式

恒成立,求

的取值范围;

(2)求不等式

的解集.

 

试卷答案

一、选择题

1-5:

CDDAB6-10:

ADDCB11、12:

AB

二、填空题

13.

14.

15.

16.

三、解答题

17.解:

(Ⅰ)因为

,所以由

,由正弦定理得

,∵

,即

,∴

,∴

,∵

,∴

.

(Ⅱ)∵

,∴

,即

.

18.解:

(Ⅰ)由题意,得

,所以

,所以

因为

,所以

则应抽取

地区的“满意”观众

,抽取

地区的“满意”观众

.

(Ⅱ)所抽取的

地区的“满意”观众记为

,所抽取的

地区的“满意”观众记为1,2,

则随机选出三人的不同选法有

,共10个结果,

至少有两名是

地区的结果有7个,其概率为

.

(Ⅲ)

由表格得

所以没有理由认为观众的满意程度是否与所在地区有关系.

19.解:

(Ⅰ)因为

所以

,所以

又因为

是等边三角形,所以

,所以

因为平面

平面

,平面

平面

所以

平面

因为

平面

,所以

平面

.

(Ⅱ)过点

,过点

因为

平面

平面

,所以

平面

同理可得

平面

,所以平面

平面

因为

平面

,所以

平面

.

因为

,所以

,在直角三角形

中,

所以

,所以

在平面

内过

因为

平面

平面

,所以

因为

,所以

平面

,所以

是点

到平面

的距离,

过点

,则

,得

,所以

因为

,所以

.

20.解:

(Ⅰ)椭圆

的离心率

,所以

又点

在椭圆上,所以

,解得

所以椭圆

的方程为

.

(Ⅱ)设直线

的方程为

.

,消元可得

,则

,由

,得

因为此等式对任意的

都成立,所以

,即

.

由题意得点

在椭圆内,故

,即

,解得

.

21.解:

(Ⅰ)

的定义域为

因为

,所以

.

时,

,所以

,故

上单调递增;

时,

,所以

,故

上单调递减;

所以1是函数

的极小值.

(Ⅱ)由题意可知,

,令

,故

上单调递增.

所以

,使得

,即

,所以

的变化情况如下:

所以

式得

,代入上式得

,则

上单调递减,所以

,所以

,即

,所以

.

22.解:

(1)由

消去参数

,得

,得

所以曲线

的直角坐标方程为

.

即曲线

是圆心为

,半径

的圆.

(2)联立直线

与曲线

的方程,得

,消去

,得

对应的极径分别为

,则

所以

.

23.解:

(1)因为

所以由

恒成立得

所以

.

(2)不等式

等价于

.

图像如下:

由图知解集为

.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 辩护词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1