Functional Materials for LIB 锂离子电池材料.docx

上传人:b****6 文档编号:5255306 上传时间:2022-12-14 格式:DOCX 页数:9 大小:1.23MB
下载 相关 举报
Functional Materials for LIB 锂离子电池材料.docx_第1页
第1页 / 共9页
Functional Materials for LIB 锂离子电池材料.docx_第2页
第2页 / 共9页
Functional Materials for LIB 锂离子电池材料.docx_第3页
第3页 / 共9页
Functional Materials for LIB 锂离子电池材料.docx_第4页
第4页 / 共9页
Functional Materials for LIB 锂离子电池材料.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

Functional Materials for LIB 锂离子电池材料.docx

《Functional Materials for LIB 锂离子电池材料.docx》由会员分享,可在线阅读,更多相关《Functional Materials for LIB 锂离子电池材料.docx(9页珍藏版)》请在冰豆网上搜索。

Functional Materials for LIB 锂离子电池材料.docx

FunctionalMaterialsforLIB锂离子电池材料

 

Report

 

FunctionalMaterialsforLithium-IonBatteries

 

1.Introduction

Energyisoneofthemostimportanttopicsinthe21stcentury.Withtherapiddepletionoffossilfuelsandincreasinglyworsenedenvironmentalpollutioncausedbyvastfossil-fuelconsumption,thereishighdemandtomakeefficientuseofenergyandtoseekrenewableandcleanenergysourcesthatcansubstitutefossilfuelstoenablethesustainabledevelopmentofoureconomyandsociety.Energystorage,anintermediatesteptotheversatile,clean,andefficientuseofenergy,hasreceivedworldwideconcernandincreasingresearchinterest.

Toreplacethetraditionalfossilfuels,thereisastrongandever-growingdemandforrenewableenergyresourcesandreliableenergystorageandconversiondevices.Rechargeable(orsecondary)batteriesareamongthemostsuccessfultriedandtruetechnologiesthatcanrepeatedlygeneratecleanelectricityfromstoredmaterialsandconvertreverselyelectricenergyintochemicalenergy.Hundredsofelectrochemicalredoxcoupleshavebeenproposedtoconstructrechargeablebatteries.Currently,themostcommonrechargeablebatteriesincludethelithium-ion,nickel-metalhydride(Ni-MH),leadacid,redoxflow,andsodium–sulfur(Na-S)systems.Figure1showsthebasicelectrodereactionsinvolvedinthesebatteries,whichexhibitdifferentvoltageandcapacity.

Figure1.Materialchemistryofrepresentativerechargeablebatteries.ΦoandEoarethestandardreductionpotentialofthehalfcellandtheoverallcellat25℃,respectively.FortheNa-Ssystem,theelectrodepotentialvarieswithoperatingtemperature.

Undoubtedly,lithium-ionbatteriesarethemostpopularrechargeablebatteries.Duringthepastthreedecades,tremendousresearchefforthasbeendevotedtoinvestigatingtheelectrochemicalperformanceofawidevarietyofactivematerialsandelectrolytes,asoutlinedinFigure2.

Figure2.Representativeapplicationsforrechargeablebatteries.

SinceresearchersatSonyEnergytechdevelopedthefirstcommercialLi-ionbatteriesinthelate1980s,avarietyofeffortshavebeenundertakentoimprovethebatterymaterials.ALIBismainlycomposedofananode(negative),acathode(positive),anelectrolyte,andaseparator.ThepositiveelectrodematerialsaretypicallyLi-containingmetaloxideswithalayeredstructure(suchaslithiumcobaltoxide)ortunnel-structuredmaterials(suchaslithiummanganeseoxide).Thenegativeelectrodematerialsincludeinsertion-typematerials(suchascarbon,Li4Ti5O12,TiO2,etc.),conversion-typematerials(suchasironoxides,nickeloxides,cobaltoxides,etc.),andalloying-typematerials(suchasSi,Sn,etc.).Theelectrolyteshouldbeagoodionicconductorandelectronicinsulator.Mostoftheelectrolytesarebasedonthesolutionofinorganiclithiumsaltsdissolvedinamixtureoftwoormoreorganicsolvents.ThefunctionoftheseparatoristopreventshortcircuitingbetweenthenegativeandpositiveelectrodesandtoprovideabundantchannelsfortransportationofLiionduringcharging/discharging.Whenabatteryiscycled,Liionsexchangebetweenthepositiveandnegativeelectrodes.Hereinthisreport,areviewofthelatestprogressisprovided,withamainfocusonthenewcathodeandanodematerialsandnovelelectrodestructures,suchasnanostructuresandnanocomposites.

2.AnodeMaterials

2.1Carbonaceousmaterials

CommercialLIBsareusuallybasedoncarbonaceousanodematerials,inwhichLiisinsertedduringcharging.TheresultingLi-interactedcarbonsshowalowpotentialclosetothatofametallicLielectrode.Byusingacarbonaceousanode,theknottyproblemofdendriteformationintheinitiallyemployedLimetalanodecanbeavoided,andthesafetyandreliabilityofLIBsareimproved.Carbonmaterialscanbetypicallyspecifiedintothreegroups,namely,graphiteandgraphitizedmaterials,ungraphitizedsoftcarbon,andhardcarbon.Graphiteismostwidelyusedduetoitsstablespecificcapacity,smallirreversiblecapacity,andgoodcyclingperformance.Intercalation/deintercalationofLi+inandoutofthegraphiteuponcharge/dischargeformsthebasisofgraphiteastheanodeofthebattery(Figure3).Mesocarbonmicrobeads(MCMBs)derivedfrompetroleumorcoalproductsexhibitdesirableoverallperformancewithmoderatehighcapacityandexcellentcyclability.Theelectrochemicalpropertiesofsoftcarbonsheat-treatedbelow1000℃andhardcarbonsarelargelydeterminedbytheirsurfacecharacteristicsandporestructures.Hardcarbondisplaysahighlithiumstoragecapacityandgoodpowercapability,butpoorelectricalconductivityandalargeirreversiblecapacity.Althoughcarbonousanodematerialsreceivewide-rangeapplicationsincommercializedLIBs,itisrecognizedthatgraphiticcarbonssufferfromsolventco-intercalationinpropylene-carbonate-basedelectrolytes,whichresultsinlargeinterlayerexpansionandsubsequentdegradationofthegraphiticstructure.Moreimportantly,thegravimetricandvolumetriccapacityofcarbonmaterialsislimited.TherapiddevelopmentofelectronicdevicesandEVsdemandsamuchhigherenergydensityaswellasahigherpowerdensityandasmallerirreversiblecapacityforanodes.

Figure3.SchematicrepresentationoftheworkingprincipleaLi-ionbattery.

2.2Lithiumalloys

Somemain-groupelements(e.g.,Si,Ge,Sn,Al,Bi,Zn,andSb)canalloywithlithiumatalowpotential.Representatively,SiandSncangeneratelithiumalloyswithLicompositionsuptoLi4.4M,givingtheoreticalspecificcapacitiesashighas4200and993mAh/g,respectively.Theirvolumetriccapacitiesalsoexceedthatofgraphite(1750mAh/cm3forSiand1000mAh/cm3forSnversus855mAh/cm3forgraphite).Figure4comparesthetheoreticalgravimetricandvolumetriccapacitiesofLixMalloysatfulllithiationandthecapacityfortheintercalationoflithiumintocarbon.Unfortunately,hugevolumechangesoccurduringtheelectrochemicallithiation/delithiationprocess.Forexample,avolumeexpansionontheorderof400%occurredduringtheformationofLi4.4Sialloy,whichcausescrackingandeventualpulverizationoftheelectrodeandresultsinrapidcapacitydecline.Anotherdisadvantageassociatedwiththesiliconanodeisthepoorelectronicconductivity,whichimpedesfastlithiation.Toovercomethesehurdles,substantialefforthasbeenfocusedonusingnanoscalematerialsand/ordispersingtheactivecomponentinarigidmatrixtoformcompositestructures.

Figure4.Thetheoreticalspecificandvolumetriccapacitiesofvariousfullylithiatedphasesofelectrochemicallyactivemetalelements.Thevolumetriccapacityiscalculatedusingthefullylithiatedvolume.

Nanostructuredalloysaremoreflexibletoaccommodatethestraininducedbyvolumevariationsbecausethetoughnessandadhesioneffectwithingrainboundariesmayincreaseatthenanoscale.Thedurabilityofnanoparticlesstemsfromtwoaspects.First,thesmallsizelimitsthemaximumpossiblelithiumconcentrationgradient.Moreover,thesurfaceisunconstrainedinthenormaldirectionandthusprovidesstressreductioninthesurfacevicinity,whichencompassessmostofthegrainsfornanoparticles.

Somepeculiarlydesignednanoscaleelectrodes,suchashollownanostructures,havemorefreespaceandcanendurelargerstresses.Forexample,nest-likeSihollownanospheresallowedfastionicdiffusionandfacilestrainrelaxation,yieldingasignificantlyimprovedreversiblecapacityandrateperformanceincomparisonwiththeirbulkcounterparts.Inaddition,aSinanowirearrayfirmlygrownonacurrentcollectorenabledefficient1Delectrontransportalongeachwirewhileundergoingsuperplasticdeformationuponalloyinganddealloying.Inthecaseoftin-basedmaterials,porousstructuresincludingSn@Cnanoparticlesencapsulatedinbamboo-likehollowcarbonnanofibers,Snnanoparticlesconfinedinelastichollowcarbonspheres,SnO2nanoparticlesloadingoncross-stackedcarbonnanotubesheets,andcoaxialSnO2@Chollowspheresprovedtobeinterestinganodecandidatesforhighlyreversiblelithiumstorage.

Anotherinnovativeapproachisemployingintermetallicphases,MM′,whereMistheactiveelementthatcanelectrochemicallyalloywithLiandM′isaninactivemetal(e.g.,Cu,Ni,Co,andFe)thatsuppressesthevolumechange.Asanexample,Ni3Sn4nanoparticlesdepositedoncoppernanorodscouldmaintainhighcapacityforhundredsofcycles.Interestingly,theelectrodemorphologywasessentiallypreservedaftercycling,incontrasttotheformationofcracksonthesurfaceofcompactelectrodes.Theexcellentcapacityretentionwaslargelyattributedtothelargefreespacebetweenthealloypillarsthateffectivelyaccommodatedthevolumevariation.

2.3Transitionmetaloxides

In2000,Poizotetal.reportedforthefirsttimethatlithiumcanbestoredreversiblyintransitionmetal(TM)oxidesthroughaheterogeneousconversionreaction:

Li+TMO→Li2O+TM

whereTMisCo,Fe,Ni,andCu.Later,reversiblelithiumstoragewasalsoobservedinTMfluorides,sulfides,nitrides,andphosphides.ItisveryinterestinginviewoffundamentalresearchthatveryinertLiForLi2OcanreactwithaTMatroomtemperature.Thiswasunexpectedpreviously.

Thereversibleelectrochemicallithiumstorageproceedsmoreeasilywiththenanoscaleelectrode.Therefore,researchontransition-metaloxideshasfocusedonnanostructures.SimilartotheLi-alloyingprocess,theconversionreactionleadstovolumevariationupontheelectrochemicalcycling.Conceptually,efficientapproachessuchasreducingparticlesizeorusingnanocompositesareapplicabletometal-oxidebasedanodematerialsaswell.

Apartfromtheprom

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1