煤炭地下气化工艺设计.docx

上传人:b****6 文档编号:5251873 上传时间:2022-12-14 格式:DOCX 页数:13 大小:197.03KB
下载 相关 举报
煤炭地下气化工艺设计.docx_第1页
第1页 / 共13页
煤炭地下气化工艺设计.docx_第2页
第2页 / 共13页
煤炭地下气化工艺设计.docx_第3页
第3页 / 共13页
煤炭地下气化工艺设计.docx_第4页
第4页 / 共13页
煤炭地下气化工艺设计.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

煤炭地下气化工艺设计.docx

《煤炭地下气化工艺设计.docx》由会员分享,可在线阅读,更多相关《煤炭地下气化工艺设计.docx(13页珍藏版)》请在冰豆网上搜索。

煤炭地下气化工艺设计.docx

煤炭地下气化工艺设计

煤炭地下气化工艺

煤炭地下气化——是一种直接把煤在地下气化的采煤方法。

利用它可获得热能,电能或各种化学产品。

本采煤方法可解除矿井内的人员,矿工繁重的、不安全的劳动;可建立一个环保洁净的企业,这一工艺一百多年来吸引了多少研究工作者想把它会付诸于现实。

目前有关煤层地下气化发展前景的资料很多;但其作者对工技术的评价众说纷纭。

俄罗斯在煤层地下气化技术方面在世界上是处于领先地位。

早在三十年代初就在二个煤田;顺涅茨克、库兹巴斯和莫斯科近郊开始了实际工作。

第一批试验是在地底下建立层状的气化炉、以获取动力气体的水蒸气。

在四十年代末在戈尔洛夫城、里希查城和杜拉城建成了第一批工业试验性的地下气化站。

当时采用直井式和半直井式的气化方案,由于查明直井式方案有一系列原则缺点,所以后来就指定采用无井式方案。

通过实际研究表明,采用气流法能把原煤层气化。

地下气化的过程由下列主要阶段组成:

从地表向煤层钻进垂直的、倾斜的和定向倾斜钻孔。

为了实现气化过程,将钻孔底端在煤层中贯通。

将煤层点燃使煤体气化:

无井式方案揭露煤层的实质就是在煤层上相隔一定距离钻进进气孔和出气孔。

气化过程中吹入的氧气与煤层的碳作用,生成二氧化碳、一氧化碳、然后是氢;此外,在气体中还有其它可燃物质;甲烷,不定的碳氢化合物,硫氢化合物。

进、出气孔按一定的网格布置形成地下气化炉,在地表设有压送气化剂,例如“空气、富氧空气的管道和把气体输送到净化和冷却设施的管道以及相应的设备和厂房。

采用洗涤装置进行气体的净化,地下气化站可以同时或单独产生动力气体和进气体黔简单的气体方案是采用空气作为气化剂,其工艺示意图见图1。

所得气体的组成及热值取决于煤层埋藏的工艺条件、煤的质量、气化剂的成分以及气体净化程度。

当采用空气作用气化剂时,理论计算气体热值不会大于4.4MJ/m3(1050大卡/m3);由于水蒸气和煤的其它有机物质的参于气化过程。

使热值达到4.6~5.0MJ/m3(1100~1200大卡/m3);当采用富氧气化剂时(含65%的氧),热值可提高至6.7MJ/m3(1600大卡/m3);所以地下气化时所得到的是低值热气体。

 

 

图1煤炭地下气化站工艺流

1公斤煤能气化成1.5~5.5m3的煤气。

整个气化过程以及燃烧热的维护是通过调整进、出气量,对于地下气化的控制是通过工艺、地质和测定的方法。

二次大战后又恢复了地下气化工作,当时主要注意力集中在燃料再处理的化学工艺,矿山和钻探工作,地下流体和气体动力学、水文地质、设计专用机械设备。

从1949年至1964年,从事煤层地下气化问题的单位有全苏地下气化研究所和地下所气化地质研究设计院以及18个科学分析有关研究所。

在此阶段,设计和投产的有1955年“南阿宾斯克”站,设计能力为5亿m3/年(相当于25吨库茨涅茨煤),1958年“沙特卡亚”站,产量为6.6亿m3/年(相当于25吨莫斯科近郊褐煤),1961年“安格林”站,产量为23亿m3/年(相当于50吨煤);还有在顿巴斯煤系和高湿润性的第聂伯尔煤田建的“卡敏斯克”和“西涅尼柯夫”气化试验站。

经过研究和工业性的试验工作证明了无井式气化褐煤层厚度从2m至22m,埋深从30m至250m;烟煤层厚度为0.6m至10m,埋深从50m至400m。

在六十年代初发现了大规模天然气,改变了国家能源利用的结构。

天然气与石油气产品成为主要燃料,从这以后煤层地下气化工作大大缩减。

从1973-1974年,整个资本主义世界发生了经济危机、重新引起了对地下气化的注意力。

由于石油、天然气的减少以及未来对能源需求增加。

煤在未来的动力和工业中的作用越来越显著;还应注意到,在资本主义发达国家中,化学工业对液态和气态的碳氢原料的需求,据预测至2000年,将达到总产量的20-50%。

对燃料需求的增加不得不设法提高煤的利用,最理想工业能源可能就是地下气化出来的气体。

在俄罗斯积累了多年从事煤层地下气化的经验。

例如“南阿宾斯克”站正常工作了36年,而“安格林”站正常工作了32年。

“安格林”站的气体热值为3.1~3.4MJ/m3(740~810大卡/m3);而在“南阿宾斯克”站为3.4~4.2MJ/m3(810~1000大卡/m3)。

“安格林”站生产的气体供给安格水力发电站,“南阿宾斯克”站供应基西列夫斯克城10个取暖锅炉,“南阿宾斯克”站主要用“基西列夫斯克——伯洛柯彼夫斯克”烟煤(库兹巴斯),共23层,厚2m~6.5m,埋深50m~300m,倾角35°~36°,煤的牌号гж。

该站的工艺流程见图2,它包括高压(至7.0MPa)压缩空气装置,用于贯通;中压(7.0MPa)装置,用于形成气化通道;低压(0.25~0.46MPa)装置,用于维持燃烧煤层。

低压空气输送至地下气化炉内,经过燃烧形成气体,原生气体进入地表洗涤装置,经喷水冷却至20°~30°,同时从气体中分离灰屑、油脂物:

CO2和H2部分被洗涤。

冷却后的气体即可经管道供给用户,用于冷却的水在洗涤循环中反复利用——那里有冷却塔和沉淀池等专用装置,水的苯酚层在开式沉淀池中,经过脱酚后变为废水排放,为了冷却空压机和输送管道采用标定

 

图2南阿宾斯克地下气站工艺流程

 

该站的设计能力为5亿m3/年,而成本为1.8卢布/1000m3(12.6卢布/吨煤),1965年实际最大产量达4.5亿m3/年(相当于气化19万吨煤/年)。

安格林站位于塔什干地区,用的是安格林褐煤,设计年产量为23.2亿m3,被气化煤层厚度从3m~29m,埋深120m~250m,其特点是煤层和有热质的砂岩和粉砂岩围岩含有极低的含水量和渗透性,煤层上面有一层厚为60m~100m的隔水层。

在地下气化炉范围内,从地表相隔15m~20m钻有垂直孔,钻孔内下入套管,管外用水泥加固。

除揭露煤层的垂直孔外,还有倾斜——水平孔,仅在岩石部分下入套管,在煤层中钻孔的贯通借助3.0~6.0MPa压力,吹入空气气化时采用低——中压(0.2~0.6MPa),参与气化的是煤,空气中的氧气和煤的水份。

最大产量达14.10亿m3(相当于气化52吨煤)。

工作过程相当稳定,证明采用空气吹孔在不同的矿山——地质条件下可达400m的深度,在地表综合解决了气体的除硫化氢的净化工作,获得了宝贵的化工原料(次亚硫酸盐和硫和脱酚的排放水)。

至1994年初,气化站消耗了146百万吨煤,获得了500亿m3气体,用于动力、取热和获得化学产品。

煤层地下气化与常规传统采煤相比表明一系列技术优点:

解除了地下矿工的繁重劳动;

排除了含高废渣燃料的运输,地表的灰渣堆以及含硫灰尘和硫酸物的污染;

可开采不受灰分和煤层厚度以及复杂矿山——地质条件限制的煤层;

可实现工艺的全部自动化和机械化;

可获得用于经济建设宝贵的化学产品;

与建设深的竖井来比可养活基本投资。

阻碍广泛应用地下气化技术的因素有:

低的化学和能量气化有效利用系数;

与天然气相比低的热值;

稳定地下气化产出气体的组分过程比较复杂;

综合利用和排除气体所含的物理热能问题比较复杂;

还缺乏对煤层地下气化工艺的技术经济评价方法。

虽然存在上述缺点,但俄罗斯及国外的专家们已经证实了煤层地下气化技术上的可行性和能够稳定的取得计划的气体产量。

二、煤层地下气化企业与传统的采煤方法的技术经济分析

2.1“南阿宾斯克”地下气化站

建于1952年,1955年投产,气化23层煤,厚为2m,倾角为55°~70°,气化所用工业储量煤为3260万吨(1977年6月1日统计)。

气化站的工业用地建于不含煤的地层上,主要车间为:

空压机和气化炉,钻探车间有必要的钻探设备;而安装车间主要为地表管道服务。

主要投资分配见表1(1980年价格,参图3所示)

表1主要投资分配

顺序号

名称

价值千卢布

%

1

厂房

310

6

2

建筑物

718.4

14

3

气化炉(煤)

57.3

1

4

传送设备

371.5

7

5

地表管线

614.3

12

6

动力机械

18

0

7

工作机械

868

16

8

注用房输送管路

2335.4

44

9

其它机械

3.5

0

10

器材

1.7

0

11

测量仪表

18.6

0

12

工具

0.3

0

合计

5317

100

图3主要投资分配图

从图中可以看出,主要投资用于输送设施(44%),这是由于10个锅炉用户的管道比较分散所造成。

气化站的设计能力为5亿m3/年,成本为1.8卢布/1000m3(12.6卢布/吨煤);1955年投入生产,1959年产量为2亿~4.56亿m3/年,它要比“基西列夫斯克——伯洛柯比夫斯克”区以下简称“基——伯”区,矿井的生产能力小很多倍。

由于缺乏大的用户,还受季节的影响,冬天每天生产90万至200万m3气体;而夏天——30万m3~40万m3。

至1967年气体产量逐步增加至1亿至4.48亿m3,而且部分气体没被利用和放空。

由于产量的增加,气体成本逐渐下降,至1966年降至最低为1.98卢布/1000m3或14卢布吨煤。

此外,气化站生产接近设计能力(4.48亿m3/年)。

表2是“基——伯”地区几个矿井生产能力和1977年采煤成本(按78.1.1统计);图4为企业生产能力有关的吨成本变化图。

表2“普洛哥比煤”矿务局竖井与露天开采的经济指标

名称

竖井

露天矿

伐汝雪

太平

契尔卡索夫

索塔哈

克西列夫

12#

捷尔金

克西列夫

伐汝雪

75年元月元日

生产能力

千吨

标准煤

1011.3

942.9

157.7

828.8

1571.8

1001.5

1279.0

976.2

1349.3

771.0

开采1吨煤至用户成本

吨标准煤,卢布

13.73

14.28

28.99

12.54

12.12

13.1

14.68

11.82

13.21

11.0

78年元月元日

生产能力

千吨

标准煤

815

761

552.1

842.2

1010

1347.5

1360

1706

789.4

开采1吨煤至用户成本

吨标准煤,卢布

17.16

18.96

15.14

12.55

13.95

15.76

10.55

9.04

11.19

图4

按交通综合研究所的资料,对于“基——伯”地区10公里的运输费用为1.46/0.891=1.64卢布/吨标准煤,0.891为实际燃料成本转为标准成本的系数。

按研究所资料,把煤送到用户(含仓库保管、装卸、粉碎等),对于电站为1卢布/吨煤或1.12卢布/吨标准煤。

因此,煤的开采成本,若换算成标准煤,则增加至2.76卢布/吨标准煤。

假如为了比较取一个平均水平,对于“基——伯”地区N312矿井,其生产能力为101万吨标准煤,从表2可知,其煤的成本为13.9卢布/吨煤标准煤;当时矿井的生产能力为“南阿宾斯克”站的15倍。

1949年,该站的生产能力已达到4.48亿m3和6万吨标准煤,气化站所生产的气体成本为1.98卢布/1000m3或14卢布/吨标准煤,没有超过当地煤的开采成本。

应该指出的是,上述对比不是完全在等同条件下进行的,因为矿井生产为了改善自己的经济指标,是采用了最新科技成本;而南阿宾斯克站是一个工业试验性质的地下气化站,其生产能力不是按经济标准的,而是从研究煤的地下气化过程考虑的。

因此不能完全反映煤层地下气化工艺的经济可行性。

南阿宾斯克站从1955年至1995年四十年的工作可划分如下几个阶段:

第一阶段,1955~1967年,发展生产至开始稳定生产,出气量0.208至4.48亿m3,达到了设计能力和所设计的技术经济指标;证明了所采用的技术决策正确。

第二阶段,1967~1977年,气化了最有利的储量,产量从2.57亿至4.59亿m3。

掌握了陡倾斜煤层的气化技术,暴露了不是全年都有大的用户(还产生了管道由于冷凝物而堵塞),还由于1962年政府停止了对地下气化技术研究和试验工作的投资,气化站开始在较严重的经济条件下工作。

主要生产金属构件。

第三阶段,1977~1987年,主要气化较薄的煤层产量降低;气化站由1983年气体工业部的领导归为原苏联煤炭工业部领导,气化站还进行了污水去酚的建筑工程和新钻探设备的试验工作。

最后结束阶段,1987~1994年,气化300m水平线下的煤层(上边地层已被开采和充填),当气化下部地层时导致岩石和水下落至底部气化炉而停止生产,这不是气化工艺没有过关,而是陡倾斜矿层的开采方法没有选对。

分析所进行的工作表明:

1.气化站经过10年工作达到了设计产量5亿m3/年;而且气体成本与一般地下开采法相当(在同一煤矿)。

2.所取得的不太高的技术经济指标不能看作为对地下气化技术的评价,因为工业试验只是想检查地下气化技术的可行性。

此外,该站处于基西列夫地区,那里廉价能源很多(露天开采,西伯利亚河流系的水力能源,天然气丰富等),影响了对地下气化站的投资。

2.2“安格林”站地下气化站的生产经验和主要技术经济指标的分析

建于塔什干地区安格林褐煤的地下气化站,1961年投产,年设计产量为23亿m3用户为位于离站4.6公里处的水力发电站,所气化的煤层厚为3~20m,埋深120~250,煤含水量和渗透性极低,围岩为高岭石化砂岩和粉砂岩,煤层上部主要含水层离煤层有一层厚为60~100m的隔水层,气化时没发生降水现象。

被气化的煤的特性见表3。

表3煤的特性

煤技术成分,%

煤可燃性,%

燃烧热值

水蒸气

Wp

灰分

Ar

挥发成分

Vr

Cr

Hr

Or

Nr

Sr

净煤质量

QpHMJ/kg

35

12.2

33.0

74~79

3.5~4.5

16.6

0.8

1.6

15.08

1982年元旦时气化站只有0.18亿吨煤,其中将近0.12亿吨煤可以气化。

在地表相隔15~20m钻有钻孔,钻孔内有套管,套管外用水泥加固;有时在煤层中钻倾斜水平孔,其岩石部分需加固。

煤层中的贯通采用30~60大气压。

进气采用2~6大气压的低—中压。

其它主要技术经济指标列于表4。

表4安格林站的主要指标

指标

生产年份

1962

1965

1968

1971

1974

1977

1980

1986

生产气量百万m3

489

1410

1005.6

798

396.8

396.3

299.4

273.1

折合标准煤千吨

55.5

160

110

85.0

57.6

41.0

29.1

27.9

气体热值大卡/m3

(低值)MJ/M3

794

3.3

796

3.33

768

3.2

743

3.1

728

3.09

726

3.04

680

2.84

850

被气化煤量千吨

182

527

369

283

183

140

101.7

80.1

每公斤煤出气量m3

2.6

2.68

2.73

2.82

2.98

2.83

2.96

2.96

理论漏气量%

15.1

15.7

16.5

21.0

13.1

14.6

7.8

7.6

气化效率系数%

59.2

60.1

57.8

58.5

61.0

58.5

56.7

单位耗电量

KW/1000m3

115

87

94.5

101

101.5

122.7

143.3

气体成本

卢布/吨标准煤

33.6

16.0

18.4

22.1

28.8

37.8

44.5

气体成本

卢布/1000m3

3.81

1.82

3.1

2.35

3.03

3.78

4.32

*气体平均折合成本22.78卢布/吨标准煤。

1000m3成本结构分析见表5,图5。

表51981年地下气化成本(卢布/1000m3)

指标

%

1

钻探工作

0.92

20.1

2

动力消耗

1.55

34

3

工人工资

0.05

1

4

设备维护

0.32

7.1

5

车间消耗

1.29

28.3

6

气体运输

0.32

7.1

7

气体直接成本

4.45

97.6

8

管理成本

0.11

2.4

9

合计:

气体

4.56

100

10

其它生产消耗

11

总成本

4.56

图5建地下气化站和竖井的人员投入数(N)与基建投资(K)的比较

1新德来列夫;2西涅尼柯夫;3;波克达诺夫No-1;4波克达诺夫No-2;5米列洛夫No-1;

6米列洛夫No-2;7列查恩;8哈巴洛夫;9南阿宾斯克No-1;10基西列夫No-2;11普洛哥比No-3。

从上图可看出,气体成主要消耗在动力(34%)、钻探(20.15%)和车间(28.3%)。

1981年销售价格为:

1.45卢布/1000m3,1981年动力消耗占34%,主要用于送气,送气占用的电能为67%,送气单位电能消耗为94KW/1000m3。

气化生产所占用的劳动力数见表6。

表6生产气体占用人数

名称

1980

1981

送气车间

32

42

钻探车间

44

36

清理

24

22

试验工作

11

11

合计

111

107

气体劳动生产率

1000m3/每人

2654

2754

吨标准煤/每人

262

285

卢布/每人产值

3477

3785

从1980年开始气化站正常工作,每年生产4~6亿m3气体。

企业经常遇到经济上的困难和物资供应少缺。

1994年气体成本(折合成煤)为2.12万卢布/吨(至用户)而在附近9#煤矿为4.5万卢布/吨(原址)。

目前气化站正组织组织砖、瓦及其它建材的生产气体于焙烧。

安格林水力发电站于1989、1990年进行过经济核算,见图6。

用气量为5.5亿和7亿m3(气体热值为3.2MJ/m3),计算一个锅炉Tn-230-2,进行比较的是利用安格林和卡恩斯柯——阿季金煤和地下气化的气,那么1989年相应煤的成本为9.71和12.34卢布/吨,而气体折合成煤为5.80卢布/吨;而至90年,则为17.94和29.65卢布/吨与16.56卢布/吨。

图6安格林水力发电站采用地下气化的气体经济效益分析图

(消耗量为550和700百万m3/年,热值为3.2MJ/m3)

就两年采用地下气化的气获得2.291百万卢布的经济效益。

还需指出:

乌兹别克坦具有丰富的天然气,这阻碍了向安格林站的投资及正常维修。

在此情况下,安格林煤层气化成本还低于正在竖井开采的2倍,大致等于露天开采的成本。

假如考虑铁路运输费用的上涨,那么地下气化可大大降低运输费用和准备费用。

2.3几个已设计的气化站技术经济指标的分析

南方气化工业公司关于在原苏联各地区建设气化站作了技术经济论证。

气化站为地方用户服务(供气),气化站的生产量由矿山企业合理的工作年限而定。

所设计的气化主要技术经济指标与正在工作的地下气化站相比较,列于表7。

从表中可知,设计的气化站的能力从14亿至56.2亿m3气体/年,热值从3.56至5.44MJ/m3。

劳动生产率为每人每月33.9~74.9的电能是用自己生产的气体来满足的。

作技术经济比较发现,气化站的人员投入数和基建投资大大小于相同产量竖井开采(图5)。

举罗斯托夫地区“米列洛夫”气化站为例:

投入人员为1000人,基建投资为100,而相邻竖井(同一产量)则为3600人和300百万卢布。

这是由于采用了高机械化、自动化的钻探和贯通技术,减少了施工工序和物资投入。

这说明煤炭地下气化工艺不仅彻底解决了社会问题,而且是比地下常规开采方法经济的多。

分析了南方气化公司所设计的地下气化站的技术经济指标后应该看到,当时(1960~1980年)下正处于大力发展油气工业以及存在廉价的能源,其吨标准煤价格要大大低于煤的地下气化成本。

因此,没有一个设计的地下气化站开始筹建。

建设特大的煤炭企业,无论是地下开采,还是露天开采,当时是不值得的。

因为需要很大的投资,很长的周期,占用很多的土地以及对周围环境的污染。

南方气化公司设计了比较大的地下气化站(产量达50~100亿m3/年),认为高的产量能降低生产成本。

但很多问题,例如地下气化时的除尘、除油脂、除二氧化碳、干燥与冷却、污水除酚以及环境保护等,在设计中没有充分考虑;而且所设计的地下气化站的主要技术经济指标均很低,动力消耗很高,环保问题没有完全解决。

材料提供人:

俄罗斯远东国立技术大学

孔德列夫В.И.教授

1999.6

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1