最新考研概率论与数理统计题库题目.docx

上传人:b****5 文档编号:5229386 上传时间:2022-12-14 格式:DOCX 页数:12 大小:25.51KB
下载 相关 举报
最新考研概率论与数理统计题库题目.docx_第1页
第1页 / 共12页
最新考研概率论与数理统计题库题目.docx_第2页
第2页 / 共12页
最新考研概率论与数理统计题库题目.docx_第3页
第3页 / 共12页
最新考研概率论与数理统计题库题目.docx_第4页
第4页 / 共12页
最新考研概率论与数理统计题库题目.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

最新考研概率论与数理统计题库题目.docx

《最新考研概率论与数理统计题库题目.docx》由会员分享,可在线阅读,更多相关《最新考研概率论与数理统计题库题目.docx(12页珍藏版)》请在冰豆网上搜索。

最新考研概率论与数理统计题库题目.docx

最新考研概率论与数理统计题库题目

考研概率论与数理统计题库-题目

概率论与数理统计

第一章概率论的基本概念

1.写出下列随机试验的样本空间

(1)记录一个小班一次数学考试的平均分数(以百分制记分)

(2)生产产品直到得到10件正品,记录生产产品的总件数。

(3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

2.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生

(2)A,B都发生,而C不发生

(3)A,B,C中至少有一个发生

(4)A,B,C都发生

(5)A,B,C都不发生

(6)A,B,C中不多于一个发生

(7)A,B,C中不多于二个发生

(8)A,B,C中至少有二个发生。

3.设A,B是两事件且P(A)=0.6,P(B)=0.7.问

(1)在什么条件下P(AB)取到最大值,最大值是多少,

(2)在什么条件下P(AB)取到最小值,最小值是多少,

4.设A,B,C是三事件,且P(A)?

P(B)?

P(C)?

1/4,P(AB)?

P(BC)?

0,P(AC)?

求A,B,C至少有一个发生的概率。

1.8

5.在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。

(设后面4个数中的每一个数都是等可能性地取自0,1,2?

?

9)

6.在房间里有10人。

分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。

(1)求最小的号码为5的概率。

(2)求最大的号码为5的概率。

7.某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。

在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少,

8.在1500个产品中有400个次品,1100个正品,任意取200个。

(1)求恰有90个次品的概率。

(2)至少有2个次品的概率。

9.从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少,10.将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少,

11.已知P()?

0.3,P(B)?

0.4,P(A)?

0.5,求P(B|A?

)。

12.P(A)?

111,P(B|A)?

P(A|B)?

求P(A?

B)。

432

13.设有甲、乙二袋,甲袋中装有n只白球m只红球,乙袋中装有N只白球M只红球,今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,

问取到(即从乙袋中取到)白球的概率是多少,

(2)第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。

先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。

14.已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。

今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少,

15.一学生接连参加同一课程的两次考试。

第一次及格的概率为P,若第一次及格则第二次及格的概率也为P;若第一次不及格则第二次及格的概率为P/2

(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。

(2)若已知他第二次已经及格,求他第一次及格的概率。

16.某人下午5:

00下班,他所积累的资料表明:

某日他抛一枚硬币决定乘地铁还是乘汽车,结果他是5:

47到家的,试求他是乘地铁回家的概率。

17.有两箱同种类型的零件。

第一箱装5只,其中10只一等品;第二箱30只,其中18只一等品。

今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样。

试求

(1)第一次取到的零件是一等品的概率。

(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。

18.设有4个独立工作的元件1,2,3,4。

它们的可靠性分别为P1,P2,P3,P4,将它们按图

(1)的方式联接,求系统的可靠性。

19.甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7。

飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为0.6,若三人都击中,飞机必定被击落。

求飞机被击落的概率。

20.设由以往记录的数据分析。

某船只运输某种物品损坏2%(这一事件记为A1),10%(事件A2),90%(事件A3)的概率分别为P

(A1)=0.8,P(A2)=0.15,P(A2)=0.05,现从中随机地独立地取三件,发现这三件都是好的(这一事件记为B),试分别求P(A1|B)P(A2|B),P(A3|B)

(这里设物品件数很多,取出第一件以后不影响取第二件的概率,所以取第一、

第二、第三件是互相独立地)

21.将A,B,C三个字母之一输入信道,输出为原字母的概率为α,而输出为其它一字母的概率都是(1,α)/2。

今将字母串AAAA,BBBB,CCCC之一输入信道,输入AAAA,BBBB,CCCC的概率分别为p1,p2,p3(p1+p2+p3=1),已知输出为ABCA,问输入的是AAAA的概率是多少,(设信道传输每个字母的工作是相互独立的。

第二章随机变量及其分布

1.一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量X的分布律

2.进行重复独立实验,设每次成功的概率为p,失败的概率为q=1,p(0<p<1)

(1)将实验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律。

(此时称X服从以p为参数的几何分布。

(2)将实验进行到出现r次成功为止,以Y表示所需的试验次数,求Y的分布律。

(此时称Y服从以r,p为参数的巴斯卡分布。

(3)一篮球运动员的投篮命中率为45%,以X表示他首次投中时累计已投篮的次数,写出X的分布律,并计算X取偶数的概率。

3.一大楼装有5个同类型的供水设备,调查表明在任一时刻t每个设备使用的概率为0.1,问在同一时刻

(1)恰有2个设备被使用的概率是多少,

(2)至少有3个设备被使用的概率是多少,

(3)至多有3个设备被使用的概率是多少,

(4)至少有一个设备被使用的概率是多少,

4.一房间有3扇同样大小的窗子,其中只有一扇是打开的。

有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。

鸟在房子里飞来飞去,试图飞出房间。

假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。

(1)以X表示鸟为了飞出房间试飞的次数,求X的分布律。

(2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。

以Y表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y的分布律。

(3)求试飞次数X小于Y的概率;求试飞次数Y小于X的概率。

5.甲、乙二人投篮,投中的概率各为0.6,0.7,令各投三次。

(1)二人投中次数相等的概率。

(2)甲比乙投中次数多的概率。

6.有甲、乙两种味道和颜色极为相似的名酒各4杯。

如果从中挑4

杯,能将甲种酒全部挑出来,算是试验成功一次。

(1)某人随机地去猜,问他试验成功一次的概率是多少,

(2)某人声称他通过品尝能区分两种酒。

他连续试验10次,成功3次。

试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。

7.有一大批产品,其验收方案如下,先做第一次检验:

从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求

(1)这批产品经第一次检验就能接受的概率

(2)需作第二次检验的概率

(3)这批产品按第2次检验的标准被接受的概率

(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率

(5)这批产品被接受的概率

8.电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求

(1)每分钟恰有8次呼唤的概率

(2)每分钟的呼唤次数大于10的概率。

9.以X表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X的分布函数是

?

1?

e?

0.4x,x?

0FX(x)?

?

x?

0?

0

求下述概率:

(1)P{至多3分钟};

(2)P{至少4分钟};(3)P{3分钟至4分钟之

间};

(4)P{至多3分钟或至少4分钟};(5)P{恰好2.5分钟}

0,x?

1,?

?

10.设随机变量X的分布函数为FX(x)?

?

lnx,1?

x?

e,,

?

?

1,x?

e.

(1)P(X<2),P{0<X?

3},P(2<X<);

(2)求概率密度fX(x).

11.设随机变量X的概率密度f(x)为

?

2?

?

x2

(1)f(x)?

?

?

?

0?

?

1?

x?

1其它

0?

x?

1?

x?

(2)f(x)?

?

2?

x1?

x?

2

?

其他?

0

求X的分布函数F(x),并作出

(2)中的f(x)与F(x)的图形。

12.某种型号的电子的寿命X(以小时计)具有以下的概率密度:

?

1000?

x?

1000f(x)?

?

x2

?

其它?

0

现有一大批此种管子(设各电子管损坏与否相互独立)。

任取5只,问其中至少有2只寿命大于1500小时的概率是多少,

13.设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其概率密度为:

x?

1?

?

FX(x)?

?

5e,x?

0

?

?

0,其它

某顾客在窗口等待服务,若超过10分钟他就离开。

他一个月要到银行5次。

以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分

布律。

并求P(Y?

1)。

14.设K在(0,5)上服从均匀分布,求方程4x2?

4xK?

K?

2?

0有实根的概率15.设X,N(3.22)

(1)求P(2<X?

5),P(,4)<X?

10),P{|X|>2},P(X>3)

(2)决定C使得P(X>C)=P(X?

C)

16.由某机器生产的螺栓长度(cm)服从参数为μ=10.05,σ=0.06的正态分布。

规定长度在范围10.05?

0.12内为合格品,求一螺栓为不合格的概率是多少,

17.设随机变量X的分布律为:

X:

2,,1,0,1,3

P:

1,5111,,,51561130

求Y=X2的分布律

18.设随机变量X在(0,1)上服从均匀分布

(1)求Y=eX的分布密度

(2)求Y=,2lnX的概率密度。

19.设X,N(0,1)

(1)求Y=eX的概率密度

(2)求Y=2X2+1的概率密度。

(3)求Y=|X|的概率密度。

20.

(1)设随机变量X的概率密度为f(x),求Y=X3的概率密度。

(2)设随机变量X服从参数为1的指数分布,求Y=X2的概率密度。

第三章多维随机变量及其分布

1.在一箱子里装有12只开关,其中2只是次品,在其中随机地取两

次,每次取一只。

考虑两种试验:

(1)放回抽样,

(2)不放回抽样。

我们定义随机变量X,Y如下:

?

?

0,若第一次取出的是正品X?

?

?

?

1,若第一次取出的是次品?

?

?

0,若第二次取出的是正品Y?

?

?

?

1,若第二次取出的是次品?

试分别就

(1)

(2)两种情况,写出X和Y的联合分布律。

2.盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到白球的只数,求X,Y的联合分布律。

?

?

k(6?

x?

y),0?

x?

2,2?

y?

43.设随机变量(X,Y)概率密度为f(x,y)?

?

?

0,

其它?

(1)确定常数k。

(3)求P(X<1.5}

(2)求P{X<1,Y<3}(4)求P(X+Y?

4}

分析:

利用P{(X,Y)?

G}=?

?

f(x,y)dxdy?

?

?

f(x,y)dxdy再化为累次积分,其中

GG?

Do

?

0?

x?

2,?

?

?

Do?

?

(x,y)?

2?

y?

4?

?

?

?

4.设二维随机变量(X,Y)的概率密度为

?

?

4.8y(2?

x)f(x,y)?

?

?

?

0

0?

x?

1,0?

y?

x其它

求边缘概率密度.

22

?

?

cxy,x?

y?

1

5.设二维随机变量(X,Y)的概率密度为f(x,y)?

?

?

0,其它?

(1)试确定常数c。

(2)求边缘概率密度。

6.设X,Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布。

Y的概率密度?

1y

?

e2,y?

0

为fY(y)?

?

2

?

0,y?

0.?

(1)求X和Y的联合密度。

(2)设含有a的二次方程为a2+2Xa+Y=0,试求有实根的概率。

7.设某种商品一周的需要量是一个随机变量,其概率密度为

?

t

?

?

te,f(t)?

?

?

?

0

t?

0t?

0

并设各周的需要量是相互独立的,试求

(1)两周

(2)三周的需要量的概率密度。

(1)求P{X=2|Y=2},P{Y=3|X=0}

(2)求V=max(X,Y)的分布律(3)求U=min(X,Y)的分布律

9.设随机变量(X,Y)的概率密度为

?

(x?

y)?

?

be

f(x,y)?

?

?

?

0

0?

x?

1,0?

y?

?

?

其它

(1)试确定常数b;

(2)求边缘概率密度fX(x),fY(y)(3)求函数U=max(X,Y)的分布函数。

第四章随机变量的数字特征

1.某产品的次品率为0.1,检验员每天检验4次。

每次随机地抽取10件产品进行检验,

如果发现其中的次品数多于1,就去调整设备,以X表示一天中调整设备的次数,试求E(X)。

(设诸产品是否是次品是相互独立的。

2,3,4,将球逐个独立2.有3只球,4只盒子,盒子的编号为1,

地,随机地放入4

只盒子中去。

设X为在其中至少有一只球的盒子的最小号码(例如X=3表示第1号,第2号盒子是空的,第3号盒子至少有一只球),求E(X)。

3.设在某一规定的时间间段里,其电气设备用于最大负荷的时间X(以分计)是一个连

续型随机变量。

其概率密度为

?

10?

x?

1500?

(1500)2x,?

?

?

1f(x)?

?

(x?

3000),1500?

x?

15002

(1500)?

其他?

0

?

?

求E(X)

4.设随机变量X的分布为

求E(X),E(3X2+5)

5.

(1)求E(X),E(Y)。

(2)设Z=Y/X,求E(Z)。

(3)设Z=(X,Y)2,求E(Z)。

XPk

20.4

00.3

20.3

6.设随机变量X1,X2的概率密度分别为

?

2e?

2x,f1(x)?

?

?

0x?

0x?

0?

4e?

4x,x?

0f2(x)?

?

0,x?

0?

2求

(1)E(X1+X2),E(2X1,3X2);

(2)又设X1,X2相互独立,求E(X1X2)

7.将n只球(1,n号)随机地放进n只盒子(1,n号)中去,一只盒子装一只球。

将一只球装入与球同号的盒子中,称为一个配对,记X为配对的个数,求E(X)8.

(1)设随机变量X的数学期望为E(X),方差为D(X)>0,引入新的随机变量(X*称为标准化的随机变量):

X*?

X?

E(X)

D(X)

验证E(X*)=0,D(X*)=1

(2)已知随机变量X的概率密度。

?

1?

|1?

x|,f(x)?

?

?

0

求X*的概率密度。

0?

x?

2其它,

9.设X为随机变量,C是常数,证明D(X)<E{(X,C)2},对于C?

E(X),(由于D(X)=E{[X,E(X)]2},上式表明E{(X,C)2}当C=E(X)时取到最小值。

x?

?

1e?

x?

010.设随机变量X服从指数分布,其概率密度为f(x)?

?

其中θ>0是常数,

?

?

0,x?

0

求E(X),D(X)。

11.设X1,X2,?

Xn是相互独立的随机变量且有E(Xi)?

μ,D(Xi)?

σ2,i=1,2,?

n.记

1?

n

2?

i?

1n1Xi,S?

n?

12?

σ2(Xi?

).

(1)验证E()?

μ,D()?

.

(2)验证ni?

12nn1?

22?

.(3)验证E(S2)S?

X?

n?

?

in?

1?

i?

1?

?

12.设X,N(μ,σ2),Y,N(μ,σ2),且X,Y相互独立。

试求Z1=αX+βY和Z2=αX,βY的相关系数(其中?

?

是不为零的常数).

13.对于两个随机变量V,W若E(V2)E(W2)存在,证明[E(VW)]2?

E(V2)E(W2)这一不等式称为柯西施瓦兹(Cauchy-Schwarz)不等式.

14.

(1)设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5

i,i=1,2,3,4。

Y=2X1,X2+3X3,1X4,求E(Y),D(Y)。

2

(2)设随机变量X,Y相互独立,且X,N(720,302),Y,N(640,252),求Z1=2X+Y,Z2=X,Y的分布,并求P{X>Y},P{X+Y>1400}

第五章大数定理及中心极限定理

1.据以往经验某种电器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。

2.计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(,0.5,0.5)上服从均匀分布,

(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少,

(2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.903.一复杂的系统,由100个互相独立起作用的部件所组成。

在整个运行期间每个部件损坏的概率为0.10。

为了整个系统起作用至少必需有85个部件工作。

求整个系统工作的概率。

(2)一个复杂的系统,由n个互相独立起作用的部件所组成,每个部件的可靠性(即部件工作的概率)为0.90。

且必须至少有80%部件工作才能使整个系统工作,问n至少为多少才能使系统的可靠性不低于0.95。

4.随机地取两组学生,每组80人,分别在两个实验室里测量某种化合物的PH值,各人测量的结果是随机变量,它们相互独立,且服从同一分布,其数学期望为5,方差为0.3,以,分别表示第一组和第二组所得结果的算术平均:

(1)求P{4.9<?

5.1}

(2)P{?

0.1?

?

?

0.1}

5.某种电子器件的寿命(小时)具有数学期望μ(未知),方差σ2=400为了估计μ,随机地取几只这种器件,在时刻t=0投入测试(设测试是相

互独立的)直到失败,测得其

n1寿命X1,?

,Xn,以?

n

少,?

Xi?

1i作为μ的估计,为使P{|?

μ|}?

0.95,问n至少为多

第六章样本及抽样分布

1.在总体N(52,6.32)中随机抽一容量为36的样本,求样本均值落在50.8到53.8之间的概率。

2.在总体N(12,4)中随机抽一容量为5的样本X1,X2,X3,X4,X5.

(1)求样本均值与总体平均值之差的绝对值大于1的概率。

(2)求概率P{max(X1,X2,X3,X4,X5)>15}.

(3)求概率P{min(X1,X2,X3,X4,X5)>10}.

3.设X1,X2,?

,Xn是来自泊松分布π(λ)的一个样本,,S2分别为样本均值和样本方差,求E(),D(),E(S2).

4.设总体X~b(1,p),X1,X2,?

,Xn是来自X的样本。

(1)求(X1,X2,?

Xn)的分布律;

(2)求?

X

i?

1ni的分布律;(3)求E(),D(),E(S2).

5.设总体X~N(μ,σ2),X1,?

,X10是来自X的样本。

(1)写出X1,?

,X10的联合概率密度

(2)写出的概率密度。

第七章参数估计

1.随机地取8只活塞环,测得它们的直径为(以mm计)

74.00174.00574.00374.00174.00073.99874.00674.002求总体均值

μ及方差σ2的矩估计,并求样本方差S2。

2.设X1,X1,?

,Xn为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

?

θcθx?

(θ?

1),x?

c

(1)f(x)?

?

0,其它?

?

?

x?

1,0?

x?

1

(2)f(x)?

?

?

0,其它.?

(5)P(X?

x)?

其中c>0为已知,θ>1,θ为未知参数。

其中θ>0,θ为未知参数。

?

?

pm

xx(1?

p)m?

x,x?

0,1,2,?

m,0?

p?

1,p为未知参数。

3.求上题中各未知参数的极大似然估计值和估计量。

4.设X1,X1,?

,Xn是来自参数为λ的泊松分布总体的一个样本,试求λ的极大似然估计量及矩估计量。

5.设总体X~N(μ,σ2),X1,X1,?

,Xn是来自X的一个样本。

试确定常数c使c?

(X

i?

1n?

1i?

1?

Xi)2为σ2的无偏估计。

6.设X1,X2,X3,X4是来自均值为θ的指数分布总体的样本,其中θ未知,设有估计量

T1?

11(X1?

X2)?

(X3?

X4)63

T2?

(X1?

2X2?

3X3?

4X4)5

T3?

(X1?

X2?

X3?

X4)

(1)指出T1,T2,T3哪几个是θ的无偏估计量;

(2)在上述θ的无偏估计中指出哪一个较为有效。

7.设某种清漆的9个样品,其干燥时间(以小时计)分别为6.05.7

5.86.57.06.3

5.66.15.0。

设干燥时间总体服从正态分布N~(μ,σ2),求μ的置信度为0.95的置信区间。

(1)若由以往经验知σ=0.6(小时)

(2)若σ为未知。

8.随机地取某种炮弹9发做试验,得炮弹口速度的样本标准差为s=11(m/s)。

设炮口速度服从正态分布。

求这种炮弹的炮口速度的标准差σ的置信度为0.95的置信区间。

9.研究两种固体燃料火箭推进器的燃烧率。

设两者都服从正态分布,并且已知燃烧率的标准差均近似地为0.05cm/s,取样本容量为n1=n2=20.得燃烧率的样本均值分别为

求两燃烧率总体均值差μ1,μ2的置信度为

0.99x1?

18cm/s,x2?

24cm/s.设两样本独立,

的置信区间。

10.设两位化验员A,B独立地对某中聚合物含氯两用同样的方法各做10次测定,其测

2222定值的样本方差依次为SA分别为A,B所测定的测定值?

0.5419,SB?

0.6065.设σA,σB

22总体的方差,设总体均为正态的。

设两样本独立,求方差比σA的置信度为0.95的置B

信区间。

第八章假设检验

1.某批矿砂的5个样品中的镍含量,经测定为(%)3.253.273.24

3.263.24。

设测定值总体服从正态分布,问在α=0.01下能否接受假设:

这批矿砂的含镍量的均值为

3.25.

1(5?

1)?

0.618,这样的矩形称为黄金2

矩形。

这种尺寸的矩形使人们看上去有良好的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试认证 > 从业资格考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1