HullFund8eCh05ProblemSolutions.docx
《HullFund8eCh05ProblemSolutions.docx》由会员分享,可在线阅读,更多相关《HullFund8eCh05ProblemSolutions.docx(15页珍藏版)》请在冰豆网上搜索。
HullFund8eCh05ProblemSolutions
CHAPTER5
DeterminationofForwardandFuturesPrices
PracticeQuestions
Problem5.8.
Isthefuturespriceofastockindexgreaterthanorlessthantheexpectedfuturevalueoftheindex?
Explainyouranswer.
Thefuturespriceofastockindexisalwayslessthantheexpectedfuturevalueoftheindex.ThisfollowsfromSection5.14andthefactthattheindexhaspositivesystematicrisk.Foranalternativeargument,let
betheexpectedreturnrequiredbyinvestorsontheindexsothat
.Because
and
itfollowsthat
.
Problem5.9.
Aone-yearlongforwardcontractonanon-dividend-payingstockisenteredintowhenthestockpriceis$40andtherisk-freerateofinterestis10%perannumwithcontinuouscompounding.
a)Whataretheforwardpriceandtheinitialvalueoftheforwardcontract?
b)Sixmonthslater,thepriceofthestockis$45andtherisk-freeinterestrateisstill10%.Whataretheforwardpriceandthevalueoftheforwardcontract?
a)Theforwardprice,
isgivenbyequation(5.1)as:
or$44.21.Theinitialvalueoftheforwardcontractiszero.
b)Thedeliveryprice
inthecontractis$44.21.Thevalueofthecontract,f,aftersixmonthsisgivenbyequation(5.5)as:
i.e.,itis$2.95.Theforwardpriceis:
or$47.31.
Problem5.10.
Therisk-freerateofinterestis7%perannumwithcontinuouscompounding,andthedividendyieldonastockindexis3.2%perannum.Thecurrentvalueoftheindexis150.Whatisthesix-monthfuturesprice?
Usingequation(5.3)thesixmonthfuturespriceis
or$152.88.
Problem5.11.
Assumethattherisk-freeinterestrateis9%perannumwithcontinuouscompoundingandthatthedividendyieldonastockindexvariesthroughouttheyear.InFebruary,May,August,andNovember,dividendsarepaidatarateof5%perannum.Inothermonths,dividendsarepaidatarateof2%perannum.SupposethatthevalueoftheindexonJuly31is1,300.WhatisthefuturespriceforacontractdeliverableonDecember31ofthesameyear?
Thefuturescontractlastsforfivemonths.Thedividendyieldis2%forthreeofthemonthsand5%fortwoofthemonths.Theaveragedividendyieldistherefore
Thefuturespriceistherefore
or$1,331.80.
Problem5.12.
Supposethattherisk-freeinterestrateis10%perannumwithcontinuouscompoundingandthatthedividendyieldonastockindexis4%perannum.Theindexisstandingat400,andthefuturespriceforacontractdeliverableinfourmonthsis405.Whatarbitrageopportunitiesdoesthiscreate?
Thetheoreticalfuturespriceis
Theactualfuturespriceisonly405.Thisshowsthattheindexfuturespriceistoolowrelativetotheindex.Thecorrectarbitragestrategyis
a)Buyfuturescontracts
b)Shortthesharesunderlyingtheindex.
Problem5.13.
Estimatethedifferencebetweenshort-terminterestratesinJapanandtheUnitedStatesonJuly13,2012fromtheinformationinTable5.4.
Thesettlementpricesforthefuturescontractsareto
Sept:
1.2619
Dec:
1.2635
TheDecember2012priceisabout0.13%abovetheSeptember2013price.Thissuggeststhattheshort-terminterestrateintheUnitedStatesexceededshort-terminterestrateinJapanbyabout0.13%perthreemonthsorabout0.52%peryear.
Problem5.14.
Thetwo-monthinterestratesinSwitzerlandandtheUnitedStatesare2%and5%perannum,respectively,withcontinuouscompounding.ThespotpriceoftheSwissfrancis$0.8000.Thefuturespriceforacontractdeliverableintwomonthsis$0.8100.Whatarbitrageopportunitiesdoesthiscreate?
Thetheoreticalfuturespriceis
Theactualfuturespriceistoohigh.ThissuggeststhatanarbitrageurshouldbuySwissfrancsandshortSwissfrancsfutures.
Problem5.15.
Thecurrentpriceofsilveris$30perounce.Thestoragecostsare$0.48perounceperyearpayablequarterlyinadvance.Assumingthatinterestratesare10%perannumforallmaturities,calculatethefuturespriceofsilverfordeliveryinninemonths.
Thepresentvalueofthestoragecostsforninemonthsare
0.12+0.12e−0.10×0.25+0.12e−0.10×0.5=0.351
or$0.351.Thefuturespriceisfromequation(5.11)givenby
where
F0=(30+0.351)e0.1×0.75=32.72
i.e.,itis$32.72perounce.
Problem5.16.
Supposethat
and
aretwofuturespricesonthesamecommoditywherethetimestomaturityofthecontractsare
and
with
.Provethat
where
istheinterestrate(assumedconstant)andtherearenostoragecosts.Forthepurposesofthisproblem,assumethatafuturescontractisthesameasaforwardcontract.
If
aninvestorcouldmakearisklessprofitby
a)takingalongpositioninafuturescontractwhichmaturesattime
;and
b)takingashortpositioninafuturescontractwhichmaturesattime
Whenthefirstfuturescontractmatures,theassetispurchasedfor
usingfundsborrowedatrater.Itisthenhelduntiltime
atwhichpointitisexchangedfor
underthesecondcontract.Thecostsofthefundsborrowedandaccumulatedinterestattime
is
.Apositiveprofitof
isthenrealizedattime
.Thistypeofarbitrageopportunitycannotexistforlong.Hence:
Problem5.17.
Whenaknownfuturecashoutflowinaforeigncurrencyishedgedbyacompanyusingaforwardcontract,thereisnoforeignexchangerisk.Whenitishedgedusingfuturescontracts,thedailysettlementprocessdoesleavethecompanyexposedtosomerisk.Explainthenatureofthisrisk.Inparticular,considerwhetherthecompanyisbetteroffusingafuturescontractoraforwardcontractwhen
a)Thevalueoftheforeigncurrencyfallsrapidlyduringthelifeofthecontract
b)Thevalueoftheforeigncurrencyrisesrapidlyduringthelifeofthecontract
c)Thevalueoftheforeigncurrencyfirstrisesandthenfallsbacktoitsinitialvalue
d)Thevalueoftheforeigncurrencyfirstfallsandthenrisesbacktoitsinitialvalue
Assumethattheforwardpriceequalsthefuturesprice.
Intotalthegainorlossunderafuturescontractisequaltothegainorlossunderthecorrespondingforwardcontract.Howeverthetimingofthecashflowsisdifferent.Whenthetimevalueofmoneyistakenintoaccountafuturescontractmayprovetobemorevaluableorlessvaluablethanaforwardcontract.Ofcoursethecompanydoesnotknowinadvancewhichwillworkoutbetter.Thelongforwardcontractprovidesaperfecthedge.Thelongfuturescontractprovidesaslightlyimperfecthedge.
a)Inthiscase,theforwardcontractwouldleadtoaslightlybetteroutcome.Thecompanywillmakealossonitshedge.Ifthehedgeiswithaforwardcontract,thewholeofthelosswillberealizedattheend.Ifitiswithafuturescontract,thelosswillberealizeddaybydaythroughoutthecontract.Onapresentvaluebasistheformerispreferable.
b)Inthiscase,thefuturescontractwouldleadtoaslightlybetteroutcome.Thecompanywillmakeagainonthehedge.Ifthehedgeiswithaforwardcontract,thegainwillberealizedattheend.Ifitiswithafuturescontract,thegainwillberealizeddaybydaythroughoutthelifeofthecontract.Onapresentvaluebasisthelatterispreferable.
c)Inthiscase,thefuturescontractwouldleadtoaslightlybetteroutcome.Thisisbecauseitwouldinvolvepositivecashflowsearlyandnegativecashflowslater.
d)Inthiscase,theforwardcontractwouldleadtoaslightlybetteroutcome.Thisisbecause,inthecaseofthefuturescontract,theearlycashflowswouldbenegativeandthelatercashflowwouldbepositive.
Problem5.18.
Itissometimesarguedthataforwardexchangerateisanunbiasedpredictoroffutureexchangerates.Underwhatcircumstancesisthisso?
FromthediscussioninSection5.14ofthetext,theforwardexchangerateisanunbiasedpredictorofthefutureexchangeratewhentheexchangeratehasnosystematicrisk.Tohavenosystematicrisktheexchangeratemustbeuncorrelatedwiththereturnonthemarket.
Problem5.19.
Showthatthegrowthrateinanindexfuturespriceequalstheexcessreturnoftheportfoliounderlyingtheindexovertherisk-freerate.Assumethattherisk-freeinterestrateandthedividendyieldareconstant.
Supposethat
isthefuturespriceattimezeroforacontractmaturingattime
and
isthefuturespriceforthesamecontractattime
.Itfollowsthat
where
and
arethespotpriceattimeszeroand
istherisk-freerate,and
isthedividendyield.Theseequationsimplythat
Definetheexcessreturnoftheportfoliounderlyingtheindexovertherisk-freerateas
.Thetotalreturnis
andthereturnrealizedintheformofcapitalgainsis
.Itfollowsthat
andtheaboveequationforreducesto
whichistherequiredresult.
Problem5.20.
Showthatequation(5.3)istruebyconsideringaninvestmentintheassetcombinedwithashortpositioninafuturescontract.Assumethatallincomefromtheassetisreinvestedintheasset.Useanargumentsimilartothatinfootnotes2and4andexplainindetailwhatanarbitrageurwoulddoifequation(5.3)didnothold.
Supposewebuy
unitsoftheassetandinvesttheincomefromtheassetintheasset.Theincomefromtheassetcausesourholdingintheassettogrowatacontinuouslycompoundedrateq.Bytime
ourholdinghasgrownto
unitsoftheasset.Analogouslytofootnotes2and4ofChapter5,wethereforebuy
unitsoftheassetattimezeroatacostof
perunitandenterintoaforwardcontracttosell
unitsfor
perunitattime
.Thisgeneratesthefollowingcashflows:
Time0:
Time1:
Becausethereisnouncertaintyaboutthesecashflows,thepresentvalueofthetime
inflowmustequalthe