The Illustrated Guide to Interstellar.docx

上传人:b****3 文档编号:5209605 上传时间:2022-12-14 格式:DOCX 页数:20 大小:5.08MB
下载 相关 举报
The Illustrated Guide to Interstellar.docx_第1页
第1页 / 共20页
The Illustrated Guide to Interstellar.docx_第2页
第2页 / 共20页
The Illustrated Guide to Interstellar.docx_第3页
第3页 / 共20页
The Illustrated Guide to Interstellar.docx_第4页
第4页 / 共20页
The Illustrated Guide to Interstellar.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

The Illustrated Guide to Interstellar.docx

《The Illustrated Guide to Interstellar.docx》由会员分享,可在线阅读,更多相关《The Illustrated Guide to Interstellar.docx(20页珍藏版)》请在冰豆网上搜索。

The Illustrated Guide to Interstellar.docx

TheIllustratedGuidetoInterstellar

Chapter1:

HeatandRadiators

Thephysics:

Radiatorperformance

Heatinspace

Spaceitselfiscold.Theelectromagneticbackgroundradiationfromdeepspacecorrespondstoatemperatureof3kelvin,barelyaboveabsolutezero.

Butdespitethecoldbackground,heatisaconstantconcerninspacecraftdesign.Everyprocessthatusesorconvertsenergy-everyelectricalsystem,everylifesupportsystem,andeverycrewmember-addsheattothespacecraftaroundit.ThelightoftheSuninEarthorbitisdirect,withnoatmospheretofilterit,deliveringmoreenergytowhereitlandsthaninEarth'sharshestdeserts.

OnEarth,machinesthatneedtodisposeoflargeamountsofheattypicallytransferittonearbyairorwater.Inspace,neitherairnorwaterisanoption.Aspacecraftthatneedstorejectheatcaneitherjettisonhotmaterialorrelyonradiation.

Blackbodyradiation

Allmatteratanytemperatureaboveabsolutezeroradiatessomeofitsheatenergyaselectromagneticradiation.Thespectrumor"color"oftheradiationandtherateofenergytransferdependonthetemperatureoftheradiatingsurface.The3-kelvincosmicbackgroundradiationisdominatedbymicrowavefrequencies,roomtemperatureisstrongestintheinfrared,andvisiblelightbecomesnoticeablearound700K.

Thesimplestformofthegoverningequationsisforasurfacethatabsorbsallincomingphotonswithoutreflectingorscatteringanyenergy.Thesamepropertiesimplythatthephotonsthatsuchanidealabsorberradiatescandepartthesurfacewithoutscatteringorinterference.Indiscussionsofthermalradiation,theterm"blackbody"refersnotmerelytoabodythatlooksblacktotheeye,buttosuchanidealabsorberandradiator.

Asyoumayexpectifyou'veencounteredidealobjectsinanyotherareaofscience,thereisnoperfectphysicalrealizationofablackbody.Everyreal-worldsurfacedeviatesfromtheidealtoagreaterorlesserextent.Manyare"greybodies":

surfacesthatradiateasufficientlyuniformfractionofablackbody'soutputinasimilarspectrumacrossthetemperatureandwavelengthrangesofinterest.

TheamountofenergythatleavesasurfacebyradiationisgivenbytheStefan-Boltzmannlaw.WhentheInterstellarradiators'in-gamedescriptionsrefertothe"Stefan-Boltzkermanlaw",thisiswhatthey'rereferencing.Thelawiscommonlywrittenas

P=AεσT^4

wherePisthepowertransferredinwatts,Aistheradiatingsurfacearea,andTisthetemperatureinkelvin.ε,theemissivityofthesurface,isthefractionofablackbody'sradiationthatthesurfaceemits.σisaproportionalityconstantwithavalueof5.67×10^-8wattspersquaremeterperkelvintothefourthpower.

Thebestknownmaterialshaveemissivitiesintheneighborhoodof99.6percent.Economicalspacecraftradiatorstodayrangefrom90to98percent.

HeatinInterstellar

InterstellarrepresentsheatenergythatneedstoberadiatedwiththeWasteHeatresource.Onein-gameunitofWasteHeatrepresentsonemegajouleofenergy.

TherearetwosourcesofWasteHeatthatInterstellartracks:

solarpanels,andgenerators,receivers,andreactors.Iwilldiscussthegamerulesforsolarpanelshere,andthoseforothersystemswhenIcoverthesystems.Radioisotopethermoelectricgeneratorshavetheirownradiatorsbuiltintothefinnedcase.Theydon'tcontributetoWasteHeatforInterstellar'spurposes.

SolarpanelsproducewasteheatequaltohalftheirElectricChargeoutput.ForconversionsbetweenKSPandreal-worldunites,1ECrepresentsonekilojouleofenergy(1EC/second=1kilowatt).Abankofpanelsproducingtwomegawattsofelectricity(2,000EC/s)willproduce1WasteHeatpersecond(1megawattofwasteheat).

RetractablesolarpanelswillretractiftheWasteHeatbarfills.Aprobethatoverheatsandlosesallofitspanelsislikelytolosepowerandbecomeinertbeforeitcoolsenoughtoredeploypanels.Othersystemswillbecomelessefficientorfailentirely.

Aninactiveshipwillslowlyradiateheatfromitsstructure,buttokeepupwithanyheat-producingsystemsthatneedtoremainactive,itwillneedradiators.TheperformanceofeachradiatorpartinInterstellarisdefinedbytwonumbers:

itsradiatingareainsquaremeters,anditsmaximumtemperatureinkelvin.Yourgoalindesigningashipistoequipitwithenoughradiatorareatoradiateallofthewasteheatthatitproducesatatemperaturethatis1)lessthanthemaximumtemperatureofanyofitsradiators,and2)lessthanthemaximumtemperatureofitsthermalsources.

Thefollowingradiatorsareavailable:

Part

Size

Area(m^2)

Max.temp

Mass

RadialRadiator

Small

0.25

970

0.005

Standard

1

0.02

FlatRadiator

8

1,350

0.1

InlineRadiator

62.5cm

1.25

970

0.05

1.25m

5

1,350

0.2

2.5m

20

0.8

HeatRadiator(deployable)

Small

100

1,350

0.2

Standard

400

0.8

Huge

1,600

3.2

LargeFlatRadiator

2,500

1,350

5

WhenyouunlocktheExperimentalElectricsnodeofthetechnologytree,allradiatorsupgradetoamaximumtemperatureof3,500K.

Thein-gameinfowindowforeachradiatorpartindicateshowmuchenergyitwillradiateatitspre-upgrademaximumtemperature,howmuchenergyitwillradiateatitspost-upgrademaximumtemperature,andhowmuchitwillradiateatthelistedtemperatures.

Forsolar-poweredprobes,theSmallRadialRadiatorradiatesjustover12.5kilowattsatitsmaximumtemperature.Apairofthesewithatotalcapacityof25kilowattsisenoughforprobesgeneratingupto50KWofsolarpower:

enoughforpracticallyanyscientificprobeandmostRemoteTechrelays.

Notethatthepoweroutputofsolarpanelsvarieswiththeamountofsunlighttheyreceive,andhencewiththeirdistancefromthesun.InstockKSP,thesevariationsarereducedtoalevelthatrarelyaffectsgameplay.Interstellaroverridesthestockcurveandmakessolarpaneloutputstrictlyinverselyproportionaltothesquareofyourdistancefromthesun.AtMoho'speriapsisof0.31KerbinAU,panelswillgeneratetentimesthepower-andheat-thattheydoatKerbin.Atan8.35AUEelooapoapsis,solarpanelsareonly1.4%aspowerfulastheyareatKerbin.ForanymissionfartheroutthanDunaorDres,considerothertypesofpowergeneration.

Readingthethermalhelper

Thisisatypicalunmannedspacecraftforthestageofthegamewheredeployablesolarpanelsandradiatorsbecomeavailable.IthasfourOX-4Lsolarpanels,developing2KWeachinoptimalorientationinKerbinorbitforatotalpowerbudgetof8KWandaheatbudgetof4KW.ThiswouldbeenoughtopowertheCommunotron16andfourDTS-M1antennasifIwereusingRemoteTech.

Ipress"I"toopenthethermalhelper.Ifyouhaveblizzy78'sToolbarmodinstalled,abuttonforthethermalhelperisalsoavailablethere.Thiswindowliststhevessel'stotalheatproductionandradiatorcapacityandcalculatestheequilibriumtemperature.IfyouwillbeoperatingawayfromKerbinspace,settheslideratthetopofthewindowtoyourintendeddistancefromthesunsosolarpaneleffectivenesscanbecalculated.

Rightnow,estimatedheatproductionis4KW(halfofthesolarpanels'electricaloutput)aspredicted.ThermalsourcetemperatureisN/AbecausetheonlyWasteHeatsourcesaresolarpanelswhosetemperatureisnottracked.Radiatormaximumdissipationiszerobecausewehaven'tinstalledanyradiatorsyet,andtheestimatedradiatortemperaturesareN/Aforthesamereason.

IfInowaddapairofsmallradialradiators,thethermalhelperupdatestoshowtheir25KWcapacityatmaximumtemperature,andestimatesatemperatureof612.9Kat4KW.

Thethermalhelperhassomeadditionalfeaturesthatarerelevantifyouequipyourvesselwithnuclearreactors.I'llreturntocoverthesefeaturesonceI'vecoveredthereactors.

Chapter2:

Science

ThischapteroftheIllustratedGuidetoKSPInterstellarwillcoverthescienceexperimentsthatInterstellaroffersintheearlytomid-career,beforenuclearpoweroradvancedengines.Someareinthetraditionalmoldofgotoplace,activatesensor,receivescience,butsomearemoreinteractive.

SeismicImpactorExperiment

Inadditiontomeasuringnaturalvibrationsandimpacts,theseismicsensorsplacedbytheApollolandingswereusedtomeasuretheimpactsofseveraldiscardedS-IVBupperstagesandLunarModuleascentstages.TheknowncharacteristicsoftheimpactorsaidedscientistsininterpretingtheseismicreadingstodrawconclusionsaboutthestructureoftheMoonandthenatureofotherimpacts.

InterstellarmodifiesthestockDouble-CSeismicAccelerometertoremovethestockexperimentthatcouldbeperformedwheneveracraftislanded,andreplacesitwithanexperimentthatrequiresyoutoprovideimpactstoanalyze.

Placingseismicsensors

Landasensoranywhereonthesurfaceofthebodyofinterest,right-clickit,andselect"Recordseismicdata"tobeginmonitoring.

Forthebestpossiblescienceyield,landmultiplesensorsatdifferentpointsonthesurface.Fivesensorsspacedabout90degreesapartwillbeenoughtoachievemaximumscience.

DataonactivesensorsisstoredinWarpPlugin.cfginyoursavefolder.ThedataisassociatedwiththeinternalIDofthevessel,soifyoujettisonasensorfromashipyouwillneedtostopandrestartitafterward.Forinstance,Iliketoequipthedescentstageofeachlunarmodulewithaprobecoreandaseismometer.Whentheascentstagedeparts,thevesselIDthatthecombinedlanderhadbeforeseparationgenerallyreferstotheascentstage,soI'vefounditnecessarytostartrecordingonlyaftertheascentstagehasdepartedandthedescentstagehashaditsfinalvesselIDassigned.

Performinganimpact

Onceallp

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1