CNC加工中刀具选择切削用量确定1.docx

上传人:b****6 文档编号:5151562 上传时间:2022-12-13 格式:DOCX 页数:15 大小:31.77KB
下载 相关 举报
CNC加工中刀具选择切削用量确定1.docx_第1页
第1页 / 共15页
CNC加工中刀具选择切削用量确定1.docx_第2页
第2页 / 共15页
CNC加工中刀具选择切削用量确定1.docx_第3页
第3页 / 共15页
CNC加工中刀具选择切削用量确定1.docx_第4页
第4页 / 共15页
CNC加工中刀具选择切削用量确定1.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

CNC加工中刀具选择切削用量确定1.docx

《CNC加工中刀具选择切削用量确定1.docx》由会员分享,可在线阅读,更多相关《CNC加工中刀具选择切削用量确定1.docx(15页珍藏版)》请在冰豆网上搜索。

CNC加工中刀具选择切削用量确定1.docx

CNC加工中刀具选择切削用量确定1

CNC加工中刀具的选择与切削用量的确定

新闻摘要:

选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机窗的加工效率,而且直接影响加工质量。

CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机窗的联接,使得设计、工艺规划及编程的整个过程全部愉捌算机上完成,一般不需要输出专门的工艺文件。

现在,许多CAD/CAM软件包

选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机窗的加工效率,而且直接影响加工质量。

CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机窗的联接,使得设计、工艺规划及编程的整个过程全部愉捌算机上完成,一般不需要输出专门的工艺文件。

现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机窗完成加工。

因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机窗加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。

本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。

一、数控加工常用刀具的种类及特点

数控加工刀具必须适应数控机窗高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。

刀柄要联接刀具并装在机窗动力头上,因此已逐渐标准化和系列化。

数控刀具的分类有多种方法。

根据刀具结构可分为:

①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。

根据制造刀具所用的材料可分为:

①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。

从切削工艺上可分为:

①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。

为了适应数控机窗对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。

数控刀具与普通机窗上所用的刀具相比,有许多不同的要求,主要有以下特点:

⑴刚性好<尤其是粗加工刀具),精度高,抗振及热变形小;

⑵互换性好,便于快速换刀;

⑶寿命高,切削性能稳定、可靠;

⑷刀具的尺寸便于调整,以减少换刀调整时间;

⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除;

⑹系列化,标准化,以利于编程和刀具管理。

二、数控加工刀具的选择

刀具的选择是在数控编程的人机交互状态下进行的。

应根据机窗的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄。

刀具选择总的原则是:

安装调整方便,刚性好,耐用度和精度高。

在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。

选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。

生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉M铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。

在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般取得很能密,故球头常用于曲面的精加工。

而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。

另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。

凿坝工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。

因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具,迅速、准确地装到机窗主轴或刀库上去。

编程人员应了解机窗上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。

目前我国的加工中心采用TSG工具系统,其刀柄有直柄<三种规格)和锥柄<四种规格)两种,共包括16种不同用途的刀柄。

在经济型数控加工中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。

一般应遵循以下原则:

①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工部位;③粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;④先铣后钻;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机窗的自动换刀功能,以提高生产效率等。

三、数控加工切削用量的确定

合理选择切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。

具体数值应根据机窗说明书、切削用量手册,并结合经验而定。

⑴切削深度t。

在机窗、工件和刀具刚度允许的情况下,t就等愉坝工余量,这是提高生产率的一个有效措施。

为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。

数控机窗的精加工余量可略小于普通机窗。

⑵切削宽度L。

一般L与刀具直径d成正比,与切削深度成反比。

经济型数控加工中,一般L的取值范围为:

L=<0.6~0.9)d。

提高v也是提高生产率的一个措施,但v与刀具耐用度的关系比较密切。

随着v的增大,刀具耐用度急剧下降,故v的选择主要取决于刀具耐用度。

另外,切削速度与加工材料也有很大关系,例如用立铣刀铣削合金刚30CrNi2MoVA时,v可采用8m/min左右;而用同样的立铣刀铣削铝合金时,v可选200m/min以上。

⑷主轴转速n(r/min>。

主轴转速一般根据切削速度v来选定。

计算公式为:

式中,d为刀具或工件直径

数控机窗的控制面板上一般备有主轴转速修调<倍率)开关,可凿坝工过程中对主轴转速进行整倍数调整。

⑸进给速度vF。

vF应根据零件的加工精度和表面粗糙度要求以及刀具和工件材料来选择。

vF的增加也可以提高生产效率。

加工表面粗糙度要求低时,vF可选择得大些。

凿坝工过程中,vF也可通过机窗控制面板上的修调开关进行人工调整,但是最大进给速度要受到设备刚度和进给系统性能等的限制。

随着数控机窗在生产实际中的广泛应用,数控编程已经成为数控加工中的关键问题之一。

在数控程序的编制过程中,要在人机交互状态下即时选择刀具和确定切削用量。

因此,编程人员必须熟悉刀具的选择方法和切削用量的确定原则,从而保证零件的加工质量和加工效率,充分发挥数控机窗的优点,提高企业的经济效益和生产水平。

高速铣削冷却方式的合理选择

新闻摘要:

随着绿色制造技术在切削加工中的应用,在高速铣削加工中采用压缩空气冷却取代切削液冷却已成为一种不错的选择。

但是,对于具体的高速铣削加工任务,选用何种冷却方式更为恰当,则应根据不同的加工目的和被加工材料仔细加以权衡,以获得最佳的加工效果。

以下是选择冷却方式时需要考虑的四个主要工艺因素。

<1)工件材料的硬

随着绿色制造技术在切削加工中的应用,在高速铣削加工中采用压缩空气冷却取代切削液冷却已成为一种不错的选择。

但是,对于具体的高速铣削加工任务,选用何种冷却方式更为恰当,则应根据不同的加工目的和被加工材料仔细加以权衡,以获得最佳的加工效果。

以下是选择冷却方式时需要考虑的四个主要工艺因素。

<1)工件材料的硬度

如果工件材料的硬度≥42HRC,选择压缩空气冷却通常可获得更佳的效果。

高速铣削高硬度材料的加工特点为:

①切削温度很高;②切屑在冷作硬化作用下会变得比母体材料更硬。

切削此类材料时,如果采用切削液冷却,可能会使刀具承受间歇性升温-冷却造成的热冲击,温度的剧烈变化容易引起硬质合金切削刃碎裂。

反之,如果采用压缩空气冷却,不仅可使刀具温度保持恒定,而且可将切屑吹离切削区,避免因高硬度切屑的二次切削

<2)工件材料的种类

如果工件材料的硬度<42HRC,则应根据工件材料的种类确定选用何种冷却方式。

在高速铣削粘性材料<如铝、软性不锈钢等)时,通常需要选用切削液冷却。

切削液可对刀具起到润滑作用,且可使切屑易于向上滑出容屑槽并与刀具后角分离。

而在高速铣削大多数模具钢<如P20,H13,S7,NAK55,D2等)时,压缩空气冷却可能是正确的选择。

如果凿坝工中发现工件材料与刀具发生粘连现象,则可能提示需要采用切削液;但也可能提示需要选用不同的刀具涂层。

<3)刀具涂层

氮碳化钛

球头铣刀在低于800sfm的切削速度下铣削硬度小于42HRC的工件材料<或圆铣刀在低于600sfm的切削速度下铣削相同材料)时,刀具采用TiCN涂层较为合适。

如果被加工材料的硬度或切削速度高于上述切削参数范围,则最好选用TiAlN涂层。

TiCN涂层对切削液冷却具有很好的适应性。

虽然切削温度的剧烈变化仍有可能引起硬质合金切削刃碎裂,但在上述切削参数范围内进行加工,一般不会产生足以引起热冲击危险的切削高温。

反之,高温切削性能较好的TiAlN涂层不太适合切削液冷却。

这种涂层在进行高温切削时,可在涂层外表面形成一层坚硬而光滑的氧化铝层,有助于提高刀具的切削性能。

<事实上,美国Millstar公司开发的“Exalon”TiAlN涂层的高温切削性能更为先进,这种TiAlN涂层的外面又增加了一层固体润滑层,可使切屑更易于沿着刀究削刃滑离。

石墨电极工件的铣削加工对刀具涂层的要求一般不太严格,选用TiAlN涂层或金刚石涂层均可。

虽然这两种涂层采用压缩空气冷却即可获得很好的切削效果,但许多加工车间仍然愿意使用切削液,这是因为切削液有助于清除加工中产生的粉尘。

<4)表面光洁度要求

用球头铣刀进行高速铣削时,为了获得较高的工件表面光洁度,可能需要采用切削液冷却。

由于球头铣刀端部的切削速度为零,采用切削液可起到很好的润滑作用。

当用典型的球头铣刀进行微进给精铣加工时,位于铣刀端部低速切削区域的工件材料可能会卡在“横刃

处于红热状态的残留材料被刀具拖曳着划过工件,并可能熔焊在工件表面,从而破坏工件的表面光洁度。

<为解决这一问题,某些具有球形轮廓的机夹刀片式铣刀,如美国Millstar公司的“SuperFinisher”刀片,可通过改进刀片的设计消除这种“横刃”。

)切削液通过对刀具和工件的润滑作用,可以减小切屑熔焊现象的影响,获得较高的表面光洁度。

基于这种考虑,即使在使用TiAlN涂层刀具的加工场合,也应采用切削液冷却方式。

虽然刀具寿命可能因此而缩短,但有时为了达到表面光洁度要求,有必要牺牲部分刀具寿命。

摘自《工具展望》b5E2RGbCAP

机械加工表面质量

机械零件的破坏,一般总是从表面层开始的。

产品的性能,尤其是它的可靠性和耐久性,在很大程度上取决于零件表面层的质量。

研究机械加工表面质量的目的就是为了掌握机械加工中各种工艺因素对加工表面质量影响的规律,以便运用这些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的。

p1EanqFDPw

一、机械加工表面质量对机器使用性能的影响

<一)表面质量对耐磨性的影响

表面粗糙度对耐磨性的影响

一个刚加工好的摩擦副的两个接触表面之间,最初阶段只在表面粗糙的的峰部接触,实际接触面积远小于理论接触面积,在相互接触的峰部有非常大的单位应力,使实际接触面积处产生塑性变形、弹性变形和峰部之间的剪切破坏,引起严重磨损。

DXDiTa9E3d

零件磨损一般可分为三个阶段,初期磨损阶段、正常磨损阶段和剧烈磨损阶段。

表面粗糙度对零件表面磨损的影响很大。

一般说表面粗糙度值愈小,其磨损性愈好。

但表面粗糙度值太小,润滑油不易储存,接触面之间容易发生分子粘接,磨损反而增加。

因此,接触面的粗糙度有一个最佳值,其值与零件的工作情况有关,工作载荷加大时,初期磨损量遇大,表面粗糙度最佳值也加大。

RTCrpUDGiT

表面冷作硬化对耐磨性的影响

加工表面的冷作硬化使摩擦副表面层金属的显微硬度提高,故一般可使耐磨性提高。

但也不是冷作硬化程度愈高,耐磨性就愈高,这是因为过分的冷作硬化将引起金属组织过度疏松,甚至出现裂纹和表层金属的剥落,使耐磨性下降。

5PCzVD7HxA

<二)表面质量对疲劳强度的影响

金属受交变载荷作用后产生的疲劳破坏往往发生在零件表面和表面冷硬层下面,因此零件的表面质量对疲劳强度影响很大。

jLBHrnAILg

表面粗糙度对疲劳强度的影响

在交变载荷作用下,表面粗糙度的凹谷部位容易引起应力集中,产生疲劳裂纹。

表面粗糙度值愈大,表面的纹痕愈深,纹底半径愈小,抗疲劳破坏底能力就愈差。

xHAQX74J0X

残余应力、冷作硬化对疲劳强度的影响

余应力对零件疲劳强度的影响很大。

表面层残余拉应力将使疲劳裂纹扩大,加速疲劳破坏;而表面层残余应力能够阻止疲劳裂纹的扩展,延缓疲劳破坏的产生LDAYtRyKfE

表面冷硬一般伴有残余应力的产生,可以防止裂纹产生并阻止已有裂纹的扩展,对提高疲劳强度有利。

<三>表面质量对耐蚀性的影响

零件的耐蚀性在很大程度上取决于表面粗糙度。

表面粗糙度值愈大,则凹谷中聚积腐蚀性物质就愈多。

抗蚀性就愈差。

Zzz6ZB2Ltk

表面层的残余拉应力会产生应力腐蚀开裂,降低零件的耐磨性,而残余压应力则能防止应力腐蚀开裂。

<四)表面质量对配合质量的影响

表面粗糙度值的大小将影响配合表面的配合质量。

对愉颁隙配合,粗糙度值大会使磨损加大,间隙增大,破坏了要求的配合性质。

对于过盈配合,装配过程中一部分表面凸峰被挤平,实际过盈量减小,降低了配合件间的连接强度。

dvzfvkwMI1

二、影响表面粗糙度的因素

<一)切削加工影响表面粗糙度的因素

刀具几何形状的复映

刀具相对于工件作进给运动时,凿坝工表面留下了切削层残留面积,其形状时刀具几何形状的复映。

减小进给量、主偏角、副偏角以及增大刀尖圆弧半径,均可减小残留面积的高度。

rqyn14ZNXI

此外,适当增大刀具的前角以减小切削时的塑性变形程度,合理选择润滑液和提高刀具刃磨质量以减小切削时的塑性变形和抑制刀瘤、鳞刺的生成,也是减小表面粗糙度值的有效措施。

EmxvxOtOco

工件材料的性质

加工塑性材料时,由刀具对金属的挤压产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用,使表面粗糙度值加大。

工件材料韧性愈好,金属的塑性变形愈大,加工表面就愈粗糙。

SixE2yXPq5

加工脆性材料时,其切屑呈碎粒状,由于切屑的崩碎而凿坝工表面留下许多麻点,使表面粗糙。

切削用量

<二)磨削加工影响表面粗糙度的因素

正像切削加工时表面粗糙度的形成过程一样,磨削加工表面粗糙度的形成也时由几何因素和表面金属的塑性变形来决定的。

6ewMyirQFL

影响磨削表面粗糙的主要因素有:

砂轮的粒度

砂轮的硬度

砂轮的修整

磨削速度

冷却润滑液

磨削径向进给量与光磨次数

工件圆周进给速度与轴向进给量kavU42VRUs

三、影响加工表面层物理机械性能的因素

在切削加工中,工件由于受到切削力和切削热的作用,使表面层金属的物理机械性能产生变化,最主要的变化是表面层金属显微硬度的变化、金相组织的变化和残余应力的产生。

由于磨削加工时所产生的塑性变形和切削热比刀刃切削时更严重,因而磨削加工后加工表面层上述三项物理机械性能的变化会很大。

y6v3ALoS89

<一)表面层冷作硬化

冷作硬化及其评定参数

机械加工过程中因切削力作用产生的塑性变形,使晶格扭曲、畸变,晶粒间产生剪切滑移晶粒被拉长和纤维化,甚至破碎,这些都会使表面层金属的硬度和强度提高,这种现象称为冷作硬化(或称为强化>。

表面层金属强化的结果,会增大金属变形的阻力,减小金属的塑性,金属的物理性质也会发生变化。

M2ub6vSTnP

被冷作硬化的金属处于高能位的不稳定状态,只有一有可能,金属的不稳定状态就要向比较稳定的状态转化,这种现象称为弱化。

弱化作用的大小取决于温度的高低、温度持续时间的长短和强化程度的大小。

由于金属在机械加工过程中同时受到力和热的作用,因此,加工后表层金属的最后性质取决于强化和弱化综合作用的结果。

0YujCfmUCw

评定冷作硬化的指标有三项,即表层金属的显微硬度HV、硬化层深度h和硬化程度N。

影响冷作硬化的主要因素

切削刃钝圆半径增大,对表层金属的挤压作用增强,塑性变形加剧,导致冷硬增强。

刀具后刀面磨损增大,后刀面与被加工表面的摩擦加剧,塑性变形增大,导致冷硬增强。

eUts8ZQVRd

切削速度增大,刀具与工件的作用时间缩短,使塑性变形扩展深度减小,冷硬层深度减小。

切削速度增大后,切削热在工件表面层上的作用时间也缩短乐,将使冷硬程度增加。

进给量遇大,切削力也增大,表层金属的塑性变形加剧,冷硬作用加强。

sQsAEJkW5T

工件材料的塑性愈大,冷硬现象就愈严重。

<二)表面层材料金相组织变化

当切削热使被加工表面的温度超过相变温度后,表层金属的金相组织将会发生变化。

GMsIasNXkA

磨削烧伤

当被磨工件表面层温度达到相变温度以上时,表层金属发生金相组织的变化,使表层金属强度和硬度降低,并伴有残余应力产生,甚至出现微观裂纹,这种现象称为磨削烧伤。

在磨削淬火钢时,可能产生以下三种烧伤:

TIrRGchYzg

回火烧伤

如果磨削区的温度未超过淬火钢的相变温度,但已超过马氏体的转变温度,工件表层金属的回火马氏体组织将转变成硬度较低的回火组织(索氏体或托氏体>,这种烧伤称为回火烧伤。

7EqZcWLZNX

淬火烧伤

如果磨削区温度超过了相变温度,再加上冷却液的急冷作用,表层金属发生二次淬火,使表层金属出现二次淬火马氏体组织,其硬度比原来的回火马氏体的高,在它的下层,因冷却较慢,出现了硬度比原先的回火马氏体低的回火组织(索氏体或托氏体>,这种烧伤称为淬火烧伤。

lzq7IGf02E

退火烧伤

如果磨削区温度超过了相变温度,而磨削区域又无冷却液进入,表层金属将产生退火组织,表面硬度将急剧下降,这种烧伤称为退火烧伤。

zvpgeqJ1hk

改善磨削烧伤的途径

磨削热是造成磨削烧伤的根源,故改善磨削烧伤由两个途径:

一是尽可能地减少磨削热地产生;二是改善冷却条件,尽量使产生地热量少传入工件。

正确选择砂轮

合理选择切削用量

改善冷却条件NrpoJac3v1

<三)表面层残余应力

产生残余应力的原因

切削时凿坝工表面金属层内有塑性变形发生,使表面金属的比容加大

由于塑性变形只在表层金属中产生,而表层金属的比容增大,体积膨胀,不可避免地要受到与它相连的里层金属的阻止,因此就在表面金属层产生了残余应力,而在里层金属中产生残余拉应力。

切削加工中,切削区会有大量的切削热产生

不同金相组织具有不同的密度,亦具有不同的比容

如果表面层金属产生了金相组织的变化,表层金属比容的变化必然要受到与之相连的基体金属的阻碍,因而就有残余应力产生。

1nowfTG4KI

零件主要工作表面最终工序加工方法的选择

零件主要工作表面最终工序加工方法的选择至关重要,因为最终工序在该工作表面留下的残余应力将直接影响机器零件的使用性能。

fjnFLDa5Zo

选择零件主要工作表面最终工序加工方法,须考虑该零件主要工作表面的具体工作条件和可能的破坏形式。

在交变载荷作用下,机器零件表面上的局部微观裂纹,会因拉应力的作用使原生裂纹扩大,最后导致零件断裂。

从提高零件抵抗疲劳破坏的角度考虑,该表面最终工序应选择能在该表面产生残余压应力的加工方法。

tfnNhnE6e5

机械加工精度的概念

概述

1.加工精度与加工误差

加工精度是指零件加工后的实际几何参数(尺寸、形状和位置>与理想几何参数的符合程度。

实际加工不可能做得与理想零件完全一致,总会有大小不同的偏差,零件加工后的实际几何参数对理想几何参数的偏离程度,称为加工误差。

2.加工经济精度

由于凿坝工过程中有很多因素影响加工精度,所以同一种加工方法在不同的工作条件下所能达到的精度是不同的。

任何一种加工方法,只要精心操作,细心调整,并选用合适的切削参数进行加工,都能使加工精度得到较大的提高,但这样会降低生产率,增加加工成本。

加工误差δ与加工成本C成反比关系。

某种加工方法的加工经济精度不应理解为某一个确定值,而应理解为一个范围,在这个范围内都可以说是经济的。

3.原始误差

由机窗、夹具、刀具和工件组成的机械加工工艺系统(简称工艺系统>会有各种各样的误差产生,这些误差在各种不同的具体工作条件下都会以各种不同的方式(或扩大、或缩小>反映为工件的加工误差。

工艺系统的原始误差主要有工艺系统的几何误差、定位误差、工艺系统的受力变形引起的加工误差、工艺系统的受热变形引起的加工误差、工件内应力重新分布引起的变形以及原理误差、调整误差、测量误差等。

4.研究机械加工精度的方法

a>研究机械加工精度的方法分析计算法和统计分析法。

b>采用滑动轴承时主轴的径向圆跳动HbmVN777sL

二、工艺系统集合误差

1.机窗的几何误差

加工中刀具相对于工件的成形运动一般都是通过机窗完成的,因此,工件的加工精度在很大程度上取决于机窗的精度。

机窗制造误差对工件加工精度影响较大的有:

主轴回转误差、导轨误差和传动链误差。

机窗的磨损将使机窗工作精度下降。

V7l4jRB8Hs

主轴回转误差

机窗主轴是装夹工件或刀具的基准,并将运动和动力传给工件或刀具,主轴回转误差将直接影响被加工工件的精度。

主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。

它可分解为径向圆跳动、轴向窜动和角度摆动三种基本形式。

产生主轴径向回转误差的主要原因有:

主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。

但它们对主轴径向回转精度的影响大小随加工方式的不同而不同。

譬如,在采用滑动轴承结构为主轴的车窗上车削外圆时,切削力F的作用方向可认为大体上时不变的,见右图,在切削力F的作用下,主轴颈以不同的部位和轴承内径的某一固定部位相接触,此时主轴颈的圆度误差对主轴径向回转精度影响较大,而轴承内径的圆度误差对主轴径向回转精度的影响则不大;在镗窗上镗孔时,由于切削力F的作用方向随着主轴的回转而回转,在切削力F的作用下,主轴总是以其轴颈某一固定部位与轴承内表面的不同部位接触,因此,轴承内表面的圆度误差对主轴径向回转精度影响较大,而主轴颈圆度误差的影响则不大。

图中的δd表示径向跳动量。

产生轴向窜动的主要原因是主轴轴肩端面和轴承承载端面对主轴回转轴线有垂直度误差。

不同的加工方法,主轴回转误差所引起的的加工误差也不同。

在车窗上加工外圆和内孔时,主轴径向回转误差可以引起工件的圆度和圆柱度误差,但对加工工件端面则无直接影响。

主轴轴向回转误差对加工外圆和内孔的影响不大,但对所加工端面的垂直度及平面度则有较大的影响。

在车螺纹时,主轴向回转误差可使被加工螺纹的导程产生周期性误差。

适当提高主轴及箱体的制造精度,选用高精度的轴承,提高主轴部件的装配精度,对高速主轴部件进行平衡,对滚动轴承进行预紧等,均可提高机窗主轴的回转精度。

导轨误差83lcPA59W9

导轨是机窗上确定竿氟窗部件相对位置关系的基准,也是机窗运动的基准。

车窗导轨的精度要求主要有以下三个方面:

在水平面内的直线度;在垂直面内的直线度;前后导轨的平行度(扭曲>。

卧式车窗导轨在水平面内的直线度误差△1将直接反映在被加工工件表面的法线方向<加工误差的敏感方向)上,对加工精度的影响最大。

卧式车窗导轨在垂直面

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1