标幺值系统的电功率传输.docx

上传人:b****6 文档编号:5127919 上传时间:2022-12-13 格式:DOCX 页数:16 大小:336.52KB
下载 相关 举报
标幺值系统的电功率传输.docx_第1页
第1页 / 共16页
标幺值系统的电功率传输.docx_第2页
第2页 / 共16页
标幺值系统的电功率传输.docx_第3页
第3页 / 共16页
标幺值系统的电功率传输.docx_第4页
第4页 / 共16页
标幺值系统的电功率传输.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

标幺值系统的电功率传输.docx

《标幺值系统的电功率传输.docx》由会员分享,可在线阅读,更多相关《标幺值系统的电功率传输.docx(16页珍藏版)》请在冰豆网上搜索。

标幺值系统的电功率传输.docx

标幺值系统的电功率传输

标幺值系统的电功率传输

为了分析问题的简便,传统电力分析方法往往把实际的

电力系统假定为单机-无穷大系统来研究。

我们看到的系统电压是由众多发电机的机端电压和负荷潮流决定的。

由于发电机的自动励磁调节功能、调度部门合理的调节方式以及系统比较庞大减轻了波动,看上去系统电压是恒定的,但是这仅仅是一种假象而已。

笔者还发现,无穷大系统的系统电压没有任何技术措施来保证,因此不宜把系统电压看做是恒定的。

单机-无穷大系统只涉及电功角的一部分,模糊了大部分电功角的作用。

正是被模糊的那部分电功角有着一些特殊的效果。

单机-无穷大系统在假定方面的缺陷严重影响了传统电力分析方法的效果。

对于现实中的许多单独问题,教科书往往是在局部电网条件下分别进行分析的,那些结论似乎都是正确的。

但是,在面对整个电力系统时,教科书中的结论却与现实存在着明显不一致。

根源在于忽略了最重要的因素-电功角-的影响。

我们习惯了为研究对象设定一个坐标系,把变化状态放

在坐标系中衡量。

似乎不这样做,得到的结论就没有说服力。

出于这种爱好,才有了单机—无穷大系统的假设。

建立坐标系的习惯本无可厚非,只是,无穷大系统的坐标原点选择得不合适。

系统电压原本是变动的,尽管变动的幅度不大,仍然不应该被当做坐标原点。

单机—无穷大系统在选取坐标原点时的一点小小疏忽,造成了严重后果。

后果是传统电力分析方法的许多结论与电网现实严重不符。

更严重的后果是那些结论禁锢了我们的思路,束缚了我们的手脚。

电功角本身是一种相对量。

把角度的坐标原点(基准矢

量)放在任何地点,所有电压矢量之间的电功角的角度差值都是不变的,在计算中都不受丝毫的影响。

因此,电功角是不需要专门设立角度坐标原点的,或者说,电功角是自带角度坐标原点的,也可以说,可以根据我们计算的需要选取角度坐标原点。

原水电部长春水电设计院的曹保定高工,在长期的现场

工作中,深深感到电力系统的许多整体性问题需要进一步探讨。

例如,在有功功率传输的过程中无功功率所发挥的作用,有功功率、无功功率、电压、频率的相互作用等。

经过多方面的理论探索后,曹高工最终走上了从动力学完整性角度认识电力系统整体性问题的道路。

在分析力学中,如果一个被研究的系统,其所有的状态

可以用一组描述变量的齐次方程来表达,即所有变量具有相同的微积分阶数,那么这个系统就属于完整动力学系统。

完整动力学系统的第一特性:

完整动力学系统的整体信息是时时刻刻向全系统传递的,在任何一个地点或者局部,我们都可以得到这些信息,依据这些信息做出合理的判断并解决局部问题。

完整动力学系统的第二特性:

允许按照合适的原则,在各个局部分别独立采取措施,来解决全局性问题。

任意复杂的电力系统(包括发电机、电网、用户负载在

内),都可以用电压、电流、联系阻抗(电气距离)等构成

组齐次方程,这组齐次方程真切地描述了电力系统在各种状态下(包括系统稳态、系统动态、电网短路等状态,短路的初始瞬间和短路被切除的初始瞬间除外,这些瞬间对动力学完整性的影响很小)的变化过程。

因此,在各种状态下都可以认为电力系统属于完整动力学系统。

从电力系统的某处或者小范围的局部获得的信息-如果信息选择得恰当-足以使我们做出正确的决策,来解决电力系统的局部问题和全局性问题。

这个结论虽然简单,却有着深刻的含义,需要在实践中加深理解。

曹高工是这样评论的,如果电力系统不具有动力学完整性,许多问题都不好解决了,可能使得交流输电系统变得没有意义。

动力学完整性的描述突破了单机-无穷大系统在假定方

面的局限,把整个电力系统(包括发电机、电网、用户负载在内)当做研究对象,建立了总电功角的概念。

动力学完整性的描述开拓了后来者的思路,为认识和解决电力系统的各类整体性问题提供了新方向。

本文后面的分析就是从电功角的角度重新认识电力系统的稳态运行问题。

对于电力系统的动态问题,请参考《对电功角和系统稳定问题的部分认识》

文。

如果把充电无功功率、电容器、调相机、电抗器等都看

做可以投切的无功设备,先忽略线路和变压器中的电阻,真实的电力系统就可以被调整成为一个只带纯负载的新电力系统,再把不同电压等级折算到标幺值系统。

在本文的后半部分,笔者将逐步恢复充电无功功率、电容器、调相机、电抗器的作用。

当电流流过线路和变压器时,将产生无功功率损耗。

一般认为,220kV系统(包括线路和主变压器)的有功功率损耗率不到1%,110kV系统(包括线路和主变压器)的有功功率损耗率不到2%,35kV、10kV系统的有功功率损耗率更大一些。

我们知道,线路和主变压器的等效电抗约为其等效电阻的10倍以上。

由此看来,电网传输有功功率所带来的无功功率需求是相当可观的。

这部分无功功率在特性方面有些特殊,它与电压的关系很小,与电流的平方成正比关系,与电网等效阻抗成正比关系。

当电网条件一定时,有功功率越大则电流越大,系统运行的电功角越大,电网消耗的无功功率越大。

当有功功率一定时,电网越弱(等效阻抗越大),系统运行的电功角越大,电网消耗的无功功率越大。

概括而言,系统运行的电功角越大,电网消耗的无功功率相对有功功率的比值越大。

下面的分析假定发电机在自动励磁调节的作用下,保持发电机端电压E的幅值恒定不变。

绝大

多数情况下,在面对负荷的峰平谷变化时,发电机无功功率

负载处电压V的角度。

图1标幺值系统电路图及其矢量图

当发电机带容性负载时,矢量图存在由E点、V点和0

点构成的直角三角形。

如果把jx分成n等份,用矢量作图

法可以做出(n-1)个V点、V点和O点构成的直角三角形。

这些直角三角形是V点重合的相似直角三角形,这说明线路

电压落在E点和V点连线上。

用矢量作图法,也可以证明发

上,电流I与E、V点连线的垂点V是无功功率分界点,流

经该点的无功功率为零。

当发电机带容性负载时。

PV侧=V*I*COS0=V*IR

Pe侧=E*l*cos(S-0)

=E*l*cosS*cos0+E*l*sinS*sin0

=(V-jxlc)*lR+jX*lR*lC

=V*IR

=Pv侧

(2)证明了,发电机发出的有功功率经过忽略了电

阻的线路,传输到了负载处。

如果把E*sinS=jx*lR代入式

(2),便可以得到式(3)。

E>V*51ii6

P—

E、V—电网两端母线电压

S-E与V之间的电功角jx—电网的等效阻抗

发电机带任何性质的负载时,式(3)都适用。

如果E点

到V点的线路用jx'代表,从E点传输到V点的有功功率也适用式⑶,用V代替V,jx'代替jx,(S-0)代替

S即可。

式(3)是一个基本的、重要的公式。

=V*lc

QE侧=E*l*sin(

=jx*卩-Qv侧

电流矢量I的垂点V将线路分为两部分,E点至垂点

V的线路消耗的无功功率由发电机提供,垂点V至V点的线路消耗的无功功率由负荷侧提供。

线路消耗的无功功率总

和为jx*卩。

负载完全等效于发电机带着电压矢量为V、电流矢量为I

的纯电阻负载。

在E点、V点和坐标原点组成的三角形中,电压矢量E

对应的内角为(90°-e),电压矢量V对应的内角为(90°-

5

S+e)。

当e=—时,负载处电压矢量V的幅值等于发电机端

2

电压矢量E的幅值。

在发电机内部,真正起作用的是气隙电势E',发电机

运行的实际电功角应该是气隙电势E'与电压矢量V之间的

电功角,称为总电功角。

气隙电势E'与发电机端电压E之

间是发电机的横轴电抗Xq(针对汽轮发电机)。

用矢量作图法可以证明,气隙电势E'落在E、V两点连线的延长线上

E'点与E点的连线代表了Xq,气隙电势E'与发电机端电压

E的夹角称为内功角。

E点与V点的连线代表了jx,发电机

端电压E与电压矢量V的夹角称为外功角。

发电机运行的总

是远远小于jx。

当负载处调节无功功率时,E'、E和V

中,气隙电势E'幅值的变化率肯定小于负载处电压矢量

幅值的变化率。

在负载处增加无功功率时,矢量V的幅值显

著增加,向线路输送更多无功功率,根据式(3),矢量E和

的幅

矢量V之间的外功角将减小;与此同时,气隙电势E'

幅值的变化率小于负载处电压V的幅值变化率,E'与

乘积在该过程中是增加的,最终结果是外功角减小多,内功角增大少,发电机运行的总电功角是减小的。

负载处电压的升高有增加有功功率的趋势,IR将增加,合成后的视在电流

I将增加,线路中无功功率损耗增加,有利于抑制负载处电压V的进一步升高,有功功率的增加有利于抑制总电功角的进一步减小。

这些因素具有负反馈的性质。

从矢量图中可以看出,负载处输入线路的无功功率在增

加的过程中,负载处电压V的幅度逐步升高,在垂点V滑

向发电机的过程中,发电机并未进相运行。

在此过程中,发电机运行的总功角有减小的趋势,这提高了系统稳定性。

负荷低谷时,发电机运行的总电功角较小,容易使得发电机进相运行。

负荷高峰时,发电机运行的总电功角较大,如果想要发电机进相运行,需要在负载处投入特别大量的电容器,会把负载处电压V抬得很高,可能超过电气设备能够容忍的电压幅度。

所以,在负荷低谷时,发电机进相运行不可怕。

在负荷高峰时,发电机很难发生进相运行的状况,向线路反送无功功率更没有问题。

在局部电压和全网频率许可的条件

,应尽最大可能向线路反送无功功率,这更有利于系统稳

定。

的假定条件下得出的结论。

所以,本文在开始部分就指出了无穷大系统的假定缺陷。

本文的后半部分将进一步解释“向系统反送无功功率”的担忧完全搞反了性质。

当发电机带感性负载时。

Pe侧=E*l*cos(

(8)

=V*lR=PV侧

式(8)证明了,发电机发出的有功功率经过忽略了电

阻的线路,传送到了负载处。

如果把E*sinS=jx*IR代入式

(8),便可以得到式(3)。

QE侧=E*l*sin(

电流矢量I的垂点V'在E、V两点连线的延长线上。

(11)证明了,E点至V点的真实线路消耗的无功功率加上

V点至垂点V的虚拟线路消耗的无功功率都是由发电机提

 

功功率为V*Ix。

阻负载。

如果V点到V点的虚拟线路用jx'代表,从E点

传输到V'点的有功功率也适用式(3),用V'代替V,(jx+jx')代替jx,(S+e)代替s即可。

用矢量作图法也可以证明,气隙电势E'落在E、V两点

连线的延长线上。

E'点与E点的连线代表了Xq,矢量E'与

矢量E的夹角称为内功角,E点与V点的连线代表了jx,矢

量E与矢量V的夹角称为外功角,发电机运行的总电功角为

内功角、外功角之和。

在实际的电力系统中,Xq总是远远小于jx。

在变化过程中,气隙电势E'幅值的变化率小于负载

处电压矢量V幅值的变化率。

在负载处增加无功功率时,矢量V的幅值增加,线路输送到负载处的无功功率减少;发电

机向线路输送的无功功率减少,相应的气隙电势E'的幅值

F降。

由于矢量E'幅值的变化率小于矢量V幅值的变化率,

E'与V的乘积是增加的,最终结果是外功角减小多,内功

角增大少,发电机运行的总电功角是减小的。

负载处电压的升高有增加有功功率的趋势,IR将增加,合成后的视在电流

I将增加,线路中无功功率损耗增加,有利于抑制负载处电压的进一步升高,有功功率的增加有利于抑制总电功角的进

步减小。

这些因素也具有负反馈的性质。

总结一下,无论负载处是容性负载还是感性负载,在负

载处投入电容器,都使得负载处电压V的幅度升高,都使得

垂点V滑向发电机方向。

只有垂点V滑到发电机端电压

处才会发生发电机的进相运行。

在此过程中,发电机运行的总功角有减小的趋势,这提高了系统稳定性。

无论负载处是容性负载还是感性负载,我们都找到了带

纯电阻性负载的等效电压V'。

矢量V的幅值变化趋势与

矢量V的幅值变化趋势一致,矢量V的电功角变化趋势与

也会适用于矢量V。

jXnTnI

当发电机带电阻性负载时。

jxiri

图2线路和变压器实际电路图

/YYY\

V1

©I

图3线路和变压器等效电路图

用矢量作图法可以证明,图2中的实际线路可以用图

中的等效线路来代表。

线路等效电抗等于线路分电抗之和,

线路等效电阻等于线路分电阻之和。

在图3中,电压矢量V

与电压矢量Vi在电功角方面是完全相同的,在幅值方面具有

变化的一致性。

电流的趋肤效应可以忽略。

因此,线路电阻

r可以看做R的一部分,讨论电压矢量V1就如同讨论电压矢

量V。

F面的讨论使用图1中的电阻性负载矢量图。

(12)

式(13)证明了,发电机发出的有功功率经过线路传送

到了负载处。

如果把E*sinS=jx*l代入式(13),便可以得

到式(3)。

式(15)证明了,发电机发出的无功功率消耗在线路中,

该无功功率为与jx成正比,即电网越强大,传输相同的电

流时,需要发电机发出的无功功率越少。

式(17)证明了,随着电功角的增加,负载处电压V的

幅值有加速下降的趋势。

将式(16)代入式(3)得到

E"*5in25

Pe侧二

2击

Pv侧“*1

dS也

式(19)证明了,当S=45°时,发电机发出的有功功

率达到最大值。

如果不采取其他措施,任何细微的扰动都会

使得发电机与系统失去同步。

S越接近45°,系统稳定性越

差。

结合式(16)、(17)、(18)、(19)来看,如果不采取其

他措施,我们可以利用的电功角角度会很小,电网传递不了多少有功功率。

E喇口5

(20)

线路损耗的无功功率为:

(21)

(22)

jx*卩空辿

1jx

州曲弓2蚯2呵必.cos5

d5

△V—负载处电压幅值变化量

E—发电机端电压幅值

S—E与V之间的电功角

jx—电网的等效阻抗

我们知道,电力系统内时时刻刻都在发生扰动,扰动使

得线路消耗无功功率发生变化。

式(24)描述了线路消耗无

功功率变化量与负载处电压幅值变化量之间的关系。

这是个与电功角S有关的函数。

在发电机端电压幅值一定并且电

网的等效阻抗一定的条件下,在大功角和小功角状态时,同

不到的虚拟无功功率,从电功角超前的地方流向电功角滞后的地方,虚拟无功功率随电功角的增大而非线性增加并且产生了真实的压降。

这大概就是电力系统严重非线性的表现方式之一。

式(17)也可以写成如下形式

式(19)也可以写成如下形式

III

(26)

△S=—-—*△PfiD

式(24)、(25)、(26)表明,电功角越大,扰动所产生

的负载处的功角波动和电压波动越大,负载处的运行状态越有“飘忽”的感觉。

电网运行的实践也证实了系统运行于大功角状态时,各方面的问题都较多,系统稳定性差,电压稳

定性也差。

以前,农网经常发生的局部电压崩溃,都是发生在电功角大的地方,电容器的某些缺点在电功角大的局部电网才会体现出来。

以往的电网发展过程也证实了,局部电压崩溃与主电网的稳定是可以并存的。

前面提到的公式都是电功角S的函数,所以,采取的各

类措施必须有利于减小电功角,也必须有利于提高负载处电

压V的幅度。

在220kV作为电网主网架的时代,该措施表现的尤其明

显。

提高发电机端电压E的设定值时,由式(16)可知,负

载处电压V的幅度是提高的。

由式(3)可知,传输相同的

有功功率的情况下,电功角S是显著减小的。

在电力系统稳

态运行时,提高发电机端电压毫无疑问是有利于系统稳定的,缺点是发电机将发出大量无功功率,占用发电机和主变压器的容量。

当发电机受到严重冲击时,提高发电机端电压

这里指典型的发电机强行励磁)对系统稳定性的影响则另当别论,喜忧参半。

措施二:

降压主变压器采取较高的分接头。

降压主变压器采取较高的分接头,表面上是直接提高了

负载处电压V。

实质上是提高了降压主变压器至负载处的电

压等级,电压变比的平方发生变化,折算系数变化使得降压主变压器至负载处的电气距离缩短了,降压主变压器至负载

处的电功角(总电功角的一部分)显著减小。

负载处的电压得以提高。

当降压主变压器负荷较大时,该措施是必需的,电压和电功角两方面的效果都很好。

措施三:

提高电网主网架的电压等级。

电网主网架中传输的有功功率数量巨大,在电网主网架

产生的电功角占总电功角的比例较大。

提高电网主网架电

压等级使得主网架的电气距离极大得缩短,对于总电功角

的减小和负载处电压的提高,具有决定性的影响。

措施四:

改造配电网。

10kV线路

这些措施

用110kV线路代替35kV和10kV线路,缩短

供电半径,用20kV电压等级代替10kV电压等级。

以提高和稳定负载处的电压。

改造配电网所带来的影响比增加一两条500kV线路更重要。

没有从10年前开始用20kV电压等级代替10kV电压等级是一大遗憾。

措施五:

采用低抗主变压器。

主变压器的等效电气距离占系统总等效电气距离的份

额较大,并且流过主变压器的有功功率也较大。

在主变压器绕组两端产生的电功角是比较大的。

高抗主变压器虽然对抑制短路电流有好处,但是在电功角方面的损失不可小视。

具体讨论请参考《主变压器低压侧绕组变形的电网原因和对

措施六:

在负载处投入过量电容性设备。

这是典型的向系统反送无功功率,并且反送无功功率的

数量很大。

本文前面的讨论已经说明了,负荷高峰时向系统反送无功功率有利于提高负载处电压和减小总电功角,有利于系统稳定。

但是,在负载处投入过量电容性设备有两方面的负作用。

从容性负载的矢量图中可以看到,电网的中间部分的电压会偏低。

负载处的电压等级较低,投入大量电容性设备的结果是电流很大,线损率很高,也加大了负载处电压

V的波动幅度。

措施七:

在有功功率传输的沿途投入适量电容性设备。

包括各电压等级的充电无功功率、各电压等级的变电站

电容器。

这是我们通常使用的调压方式的最重要组成部分。

向系统反送无功功率”的判据应该是“电网中消耗的无功

功率是否全部由发电机提供”。

任何电容性设备的投入都是

发电机发出的无功功率小于电网消耗的无功功率,所以只要在电网中投入了电容器就是在实质上向系统反送无功功率了。

即使不投入电容器,充电无功功率也发挥着与电容器同样的作用,仍然是在实质上向系统反送无功功率。

无论在任何电压等级,在任何地点,电容器提供的无功功率和自身消耗的有功功率总是反向的,这是向系统反送无功功率的一个

特殊”形式而已。

由此看来我们是经常性的、不间断的在

变压器低压侧投入电容器是典型的向系统反送无功功率,就是措施六的情形。

笔者坚持认为措施六是向系统反送无功功率的典型方式一,措施七是向系统反送无功功率的典型方式二。

方式一和方式二在实质上是一样的。

笔者反反复复讨论该问题,只是为了表达一点感受,向系统反送无功功率实在是好得很,不向系统反送无功功率电网就传输不了多少有功功率。

措施八:

充分发挥发电机双向调节无功功率的能力。

措施九:

特殊情况下投入适量电感性设备。

面,把措施八、措施九一起进行解释。

在负荷高峰时段,电网各处的电容器大量投入,充电无

功功率自行投入,发电机保持较高的端电压输出较多无功功

率。

此时总电功角较大。

此时向110kV线路反送无功功率,

向220kV线路反送无功功率都是安全的,有利于减轻500kV

主变压器的负担,有利于减少或取消500kV站电容器安装容

量。

如果取消500kV站电容器,有增加发电机至500kV母线

电功角的趋势。

因为采取了从负载处向500kV系统反送无功

从矢量图中都可以得出总电功角保持不变的结论。

只不过,

500kV站母线电压会稍微下降一些。

这不重要也不可怕。

我们必须确认一点,现在电力系统运行的总电功角比以往要小

得多。

电功角的减小使得系统稳定性和电压稳定性都显著改善。

电功角比电压的影响更重要,总电功角比部分电功角更有意义。

当负荷下降时,总电功角在减小,线路消耗的无功功率

降,充电无功功率变化不大,电网各处的电压有升高的趋势。

负载处电压的升高使得电容器逐步退出运行,向110kV、220kV线路反送无功功率逐步减少直至转向,转向以后,

110kV、220kV线路传输给负载处的无功功率开始增加。

与此同时,发电机发出的无功功率在减少。

电网各处保持的电压符合要求。

在负荷低谷时,总电功角比较小,线路消耗的无功功率

比较少,充电无功功率变化不大。

负载处的电容器大量退出运行,110kV、220kV线路传输给负载处的无功功率较多。

500kV站的低压电抗器逐步投入运行。

与此同时,发电机端电压的设定值被降低,所有发电机都应该进相运行吸收无功功率。

电网各处保持的电压仍能符合要求。

发电机进相运行对于保持电网各处电压在合理范围内至关重要。

负载处的电压与高峰时相比变化不大。

因为发电机进相运行,发电机气隙电势下降较多,低谷时段的总电功角将会比不进相运行增大一些。

在低谷时段,总电功角本来就比较小,在此基础上增大一些仍然比高峰时段的总电功角要小,仍然比高峰时段的系统稳定性要好许多。

因此,发电机进相运行的系统稳定

性是不用担心的。

所有发电机都进相运行远比主力发电机进相运行更好一些。

只是,对于电气距离较远并且重载的水电、核电机组,进相运行的深度不宜过大。

如果每日的负荷在标幺值的100%至70%之间变化,那么,

电网消耗的无功功率大约在标幺值的100%至50%之间变化。

充电无功功率的变化不大。

无功功率的变化量可以依靠发电机的无功功率双向调节能力和投切电容器、电抗器来平衡。

实际的电力系统是比较复杂的,电网本身消耗的无功功

率相当多。

如果简单地认为无功功率是从电压高的地方流向

路反送无功功率就紧张得不得了,以为发电机的气隙电势会

降,系统要出大问题了。

为了克服这种恐惧,也为了更加符合电力系统运行的实际情况,笔者认为应该从系统运行的某个状态点上动态地观察电力系统的变化。

可以认为无功功

率传输方向有两个:

一是从电功角超前的地方流向电功角滞

的地方。

假定A处母线电压偏低,系统向A处母线提供大量无功功率。

当A处母线投入电容器后,A处电压相对原来提高了,系统电压维持不变或变化甚微,A处将向系统提供新的无功功率。

新的无功功率与原来的无功功率潮流叠加之后,才是我们看到的现象:

系统向A处母线提供的无功功率小了,甚至发生无功功率反送。

多年前,笔者曾经感慨电力系统的变化过程是按周波来

计算的。

这么快的变化过程是否给我们留有调节的机会和可能性,主要取决于总电功角的大小,不在于频率,也不在于电压。

频率和电压不重要吗?

它们不如电功角重要。

电功角不出问题,它们都不会有多大问题,都会给我们留有调节的余地。

电压失稳都是在大功角条件下引发的。

现在的电网已经度过了电压失稳的时代。

在本文的开始部分,真实的电力系统先被简化成了理想

情况。

随着讨论的深入,我们发现如果不向系统反送无功功

率(包括典型方式一和典型方式二),电网就传输不了多少有功功率

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1