排列组合典型例题.docx

上传人:b****3 文档编号:5055362 上传时间:2022-12-12 格式:DOCX 页数:9 大小:34.49KB
下载 相关 举报
排列组合典型例题.docx_第1页
第1页 / 共9页
排列组合典型例题.docx_第2页
第2页 / 共9页
排列组合典型例题.docx_第3页
第3页 / 共9页
排列组合典型例题.docx_第4页
第4页 / 共9页
排列组合典型例题.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

排列组合典型例题.docx

《排列组合典型例题.docx》由会员分享,可在线阅读,更多相关《排列组合典型例题.docx(9页珍藏版)》请在冰豆网上搜索。

排列组合典型例题.docx

排列组合典型例题

典型例题一

例1用O到9这10个数字・可组成多少个没有重复数字的四位偶数

解法仁当个位数上排“0”吋,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有个;

当个位上在“2.4、6.8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排.按乘法原理有AI(个)・

•••没有重复数字的四位偶数有

Aj+A:

&∙=504+1792=2296个.

典型例题二

例2三个女生和五个男生排成一排

(1)如果女生必须全排在一超,可有多少种不同的排法

(2)如果女生必须全分开,可有多少种不同的排法

(3)如果两端都不能排女生,可有多少种不同的排法

(4)如果两端不能都排女生,可有多少种不同的排法

解:

(1)(捆绑法)因为三个女生必须排在一担,所以可以先把她们看成一个整体,这样同五个男生合一是共有六个元素,然成一排有种不同排法.对于其中的每一种排法,三个女生之间又都有对种不同的排法,因此共有-Al=4320种不同的排法.

(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻・由于五个另生排成一排有种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有A;种方法,因此共有AI-AI=14400种不同的排法.

(3)解法1:

(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有种不同的排法,对于其中的任意一种排法,其余六位都有Af种排法,所以共有

14400种不同的排法.

(4)解法1:

因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有AI-A^种不同的排法;如果首位排女生,有种排法,这时末位就只能排男生,有&种排法,首末两端任意排定一种情况后,其余6位都有种不同的排法,这样可有•思・A:

种不同排法.因此共有+A;・現・=36000种不同的排法.

解法2:

3个女生和5个畀生排成一排有A;种排法,从中扣去两端都是女生排法A;・AI种,就能得到两端不都是女生的排法种数.

因此共有A^-A^A^=36000种不同的排法.

典型例题三

例3排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种

(2)歌唱节目与舞蹈节目间隔排列的方法有多少种

解:

(1)先排歌唱节目有种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有人:

中方法.所以任两个舞蹈节目不相邻排法有:

AIAt=43200.

(2)先排舞蹈节目有中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

所以歌唱节目与舞蹈节目间隔排列的排法有:

AtAI=2880种方法。

典型例题四

例4菜一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.

分析与解法仁6六门课总的排法是A爲其中不符合要求的可分

为:

体育排在第一书有种排法■如图中I;数学排在最后一节有种排法•如图中II;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中III,这种情况有种排法,因此符合条件的排法应是:

&一2A;+A:

=5O4(种)・

典型例题五

例5现有3辆公交车、3位司机和3位傳票员,毎辆车上需配1位司机和1位傍票员•问车辆、司机、傳票员搭配方案一共有多少种

分析:

可以把3辆车看成排了顺序的三个空:

∏~T~lτ然后把3名司机和3名隹票员分别填入・因此可认为事件分两步完成,每一步都是一个排列问题.

解:

分两步完成.第一步,把3名司机安排到3辆车中.有Λ∕=6种安排方法;第二步

把3名隹票员安排到3辆车中,有Af=G种安排方法.故搭配方案共有

A;・A;=36种.

典型例题六

例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校.每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法

学校

1

1

2

2

1

2

3

1

2

解:

填表过程可分两步・第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其顺序,其中又包含三小步,因此总的排列数有・盃・£种.综合以上两步,由分步计数原理得不同的填表方法有:

Aj-Aj∙A;-A;=5184种.

典型例题七

例57名同学排队照相.

(1)若分成两排照,前排3人,后排4人,有多少种不同的排法

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法

(3)若排成一排照,甲、乙.丙三人必须相邻,有多少种不同的排法

(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法

解:

(1)A:

=A;=5040种.

(2)第一步安排甲,有种排法;第二步安排乙,有A:

种排法;第三步余下的5人排在剩下的5个位置上,有&种排法,由分步计数原理得,符合要求的排法共有£・£•左=1440种.

(3)第一步,將甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的全排列问题,有种排法;第二步,甲、乙、丙三人内部全排列,有种排法.由分步计数原理得,共有左・A∕=720种排法.

(4)第一步.4名男生全排列,有种排法:

第二步,女生插空,即将3名女生插入4名男生之间的5个空位,这样可保证女生不相邻,易知有种插入方法.由分步计数原理得,符合条件的排法共有:

•农=1440种・

典型例题八

例8从2、3、4、5、6五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.

的数共有眉个,当这些数相加时,由“2”产生的和是盃∙2;形如国亟1

的数也有Af个,当这些数相加时,由“2”产生的和是A;-2-10;形如[≡≡的数也有盂个,当这些数相加时,由“2”产生的和应是眉・2・100・这样在所有三位数的和中,由“2”产生的和是加・2・111・同理由3、4、5、6产生的和分别是∕φ3∙lll,A;∙4∙111,4:

・5・111,A;-6111,因此所有三位数的和是A;-111-(2+3+4+5+6)=26640・

典型例题九

例9

计算下列各题:

(1)

4〃Ll・AfI-m

屁;

(2)A:

:

(3)弋严;

⑷142∙2T…+"⑸⅛÷∣÷⅛-÷⅛

解:

(1)Aj5=15×14=210:

(2)=6!

=6×5×4×3×2×1=720;

(3)原式=——WzlU——∙(n-∕π)!

-一!

一=U!

"一〃2)!

・一!

一[n一1-(m-1)!

](/7-1)!

(/?

一Irl)!

(Il-1)!

⑷原式=(2!

-l)+(3!

-2!

)÷(4!

-3!

)+--∙+[(n+l)!

-n!

]=(n+l)!

-l:

⑸•••

…+口

2!

3!

4!

n↑

Illlll

=———+———+————+1!

2!

2!

3!

3!

4!

本題计算中灵活地用到下列各式:

H!

=∕ψ7-1)!

;/?

/?

!

=(∕z+l)!

-//!

:

—=一!

一一丄;使问题解得简单.快捷・n!

(/2-1)!

U!

典型例题十

例10Gf六人排一列纵队.限定“要排在〃的前面("与b可以相邻,

也可以不相邻),求共有几种排法.对这个題目,A、B、C.D四位同学各自给出了一种算式:

A的算式是丄々:

〃的算式是(A1,+A*+A*+A]+^)∙A^;C的算式是忠:

2

D的算式是C:

・A:

・上面四个算式是否正确,正确的加以解释,不正确的说明理由.

解:

A中很显然,“d在〃前的六人纵队”的排队数目与“b在G祈的六人纵队”排队数目相等,而“六人纵队”的排法数目应是这二者数目之和.这表明:

A的算式正确.

3中把六人排队这件事划分为"占位,b占位,其他四人占位这样三个阶投,然后用乘法求出总数,注意到“占位的状况决定了方占位的方法数,第一阶段,当"占据第一个位置时,b占位方法数是£;当“占据第2个位置时,Z?

占位的方法数是A;:

……:

当“占据

第5个位置时,b占位的方法数是A:

当",b占位后,再排其他四人,他们有A:

种排法,可见B的算式是正确的.

I

C中/可理解为从6个位置中选4个位置让c9d9e,f占据,这时,剩下的两个位置

依前后顺序应是α9方的.因此C的算式也正确.

D中把6个位置先團定两个位置的方法数C:

这两个位置让",Z?

占据,显然,a.b占据这两个圈定的位置的方法只有一种("要在b的前面),这时,再排其余四人,又有种排法,可见D的算式是对的.

说明:

下一节组合学完后,可回过头来学习D的解法.

典型例题十一

例11八个人分两排坐,每排四人.限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法

解法仁可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙.丙在后排,甲坐在笳排的八人坐法"两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”:

“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:

A:

∙A;・£+Aj∙A:

∙=8640(种)・

解法2:

采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八人坐法数”看成“总方法数”,这个数目是A∖-A^.在这种前提下,不合题意的方法是''甲坐第一排,且乙、丙坐两排的八人坐法・”这个数目是4;・C;・£・A:

・&・其中第一个因数表示甲坐在第一排的方法数,C;表示从乙、丙中任选出一人的办法数,表示把选出的这个人安排在第一排的方法数.下一个4;则表示乙、丙中沿未安排的那个人坐在第二排的方法数,就是其他五人的坐法数,于是总的方法数为

A:

.A^_A:

.C;.A;A:

.&=8640(种).

说明:

解法2可在学完组合后回过头来学习.

典型例题十二

例12计划在某画廊展出10幅不同的画,其中1幅水彩画.4幅油画.5幅国画,排成一行陈列,要求同一品种的画必须连在一是,并且不彩画不放在两端,那么不同陈列方式有

().

A.B.•念C.D.A^A^AI

解:

将同一品种的画“捆"在一是•注意到水彩画不放在两端,共有Aj种排列・但4幅油画、5幅国画本身还有排列顺序要求.所以共有种陈列方式.

•••应选D.

说明:

关于“若干个元素相邻"的排列问题,一般使用“捆绑”法,也就是将相邻的若千个元素“捆绑”在一起,看作一个大元素,与其他的元素进行全排列;然后,再“松绑”,将被“捆绑”的若干元素,内部进行全排列.本例题就是一个典型的用“捆绑”法来解答的问题.

典型例题十三

例13由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的

个数共有().

A.210B.300C.464D.600

解法1:

(直接法):

分别用1,2,3,4,5作十万位的排列数,共有5∙&种,所以其中个位数字小于十位数字的这样的六位数有丄∙5∙A?

=300个.

2廿

解法2:

(间接法):

取O,l,∙∙∙,5个数字排列有而O作为十万位的排列有所以其中个位数字小于十位数字的这样的六位数有*(々一&)=300(个).

•••应选B.

说明:

(1)直接法、间接法是解决有关排列应用题的两种基本方法,何时使用直接法或间接法要视问题而定,有的问題如果使用直接法解决比较困难或者比较麻烦,这时应考虑能否用间接法来解.

(2)“个位数字小于十位数字”与“个位数字大于十位数字"具有对称性,这两类的六位数个数一样多,即各占全部六位数的一半,同类问题还有6个人排队照像时,甲必须站在乙的左侧,共有多少种排法.

典型例题十四

例14用1,2,3,4,5,这五个数字,组成没有重复数字的三位数,其中偶数共有().

A.24个B.30个C.40个D.60个

分析:

本題是带有附加条件的排列问题,可以有多种思考方法,可分类,可分步,可利用槪率,也可利用本题所提供的选择项分析判斷.

解法仁分类计算.

将符合条件的偶数分为两类.一类是2作个位数,共有个,另一类是4作个位数,

也有Aj个.因此符合条件的偶数共有A'+A4=24个.

解法2:

分步计算.

先排个位数字,有种排法,再排十位和百位数字,有Aj种排法,根据分步计数原理,

三位偶数应有A*=24个.

解法3:

按槪率算.

用1一5这5个数字可以纽成没有重复数字的三位数共有A;=60个,其中偶点其中的

22

二.因此三位偶数共有60×-=24个.

55

解法4:

利用选择项判断.

用1—5这5个数字可以纽成没有重复数字的三位数共有A;=60个.其中偶数少于奇

数,因此偶数的个数应少于30个,四个选择项所提供的答案中.只有A符合条件.

•••应选A.

典型例题十五

W15

(1)i+^Λl,+2A7+3A3+・・・+8A;・

(2)求S”=l!

+2!

+3!

+…+”!

5≥10)的个位数字.

分析:

本題如果直接用排列数公式计算,在运算上比较困难,现在我们可以从和式中项的特点以及排列数公式的特点两方面考虑.在

(1)中,项可抽象为nA,l,t=(n+∖-∖)A,l,l=(//+1)4;;-nA:

=-A;;,

(2)中,项为

n!

=«(n—1)(m-2)--∙3∙2∙1,当n≥5时,乘积中出现5和2,积的个位数为0,在加法运算中可不考虑.

解:

⑴由nA"=(n+l)!

-n!

・•・原式=2!

-l!

+3!

-2!

+--∙÷9!

-8!

=9!

-l!

=362879.

(2)当∕?

≥5时,H!

=n(n-1)(∕?

-2)••-3•2•1的个位数为0,

.∙.Sn=l!

+2!

+3!

+--+n!

(∕z≥10)的个位数字与l!

+2!

+3!

+4!

的个位数字相同.

而l!

+2!

+3!

+4!

=33.∙'∙S和的个位数字为3.

说明:

对排列数公式特点的分析是我们解决此类问題的关键,比如:

求证:

—+—+—+••■+一-一=I-一)一,我们首先可讯等式右边的2!

3!

4!

(/7+1)!

(h+1)!

n_/7+1-1_∕ι+l1_11

(/?

+1)!

"(H+1)!

"(M+1)!

"(π+l)!

"∕iT"(/?

+1)!

典型例题十六

例16用0、1、2、3、4.5共六个数字•纽成无莹复数字的自然数,

(1)可以组成多少个无重复数字的3位偶数

(2)可以组成多少个无磴复数字且被3整除的三位数

分析:

3位偶数要求个位是偶数且首位数字不能是O,由于个位用或者不用数字O,对确定首位数字有影响,所以需要就个位数字用O或者用2、4进行分类.一个自然数能被3整除的条件是所有数字之和是3的倍数,本题可以先确定用哪三个数字,然后进行排列,但要注意就用与不用数字O进行分类.

解:

(1)就个位用O还是用2、4分成两类,个位用0,其它两位从1.2、3、4中任取两数排列,共有A;=12(个),个位用2或4,再确定首位,置后确定十位,共有2χ4x4=32(个),所有3位偶数的总数为:

12+32=44(个).

(2)从0、1、2、3、4、5中取出和为3的倍数的三个数,分别有下列取法:

(012)、

(015)>(024)、(045).(123)、(135)、(234)、(345),前四组中有0,后四组中没有0.用它们排成三位数,如果用祈4组,共有4×2×A7=16(^),如果用后四纽,共有4×A∕=24(个),所有被3整除的三位数的总数为16+24=40(个).

典型例题十七

例17—条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法

分析:

对于空位,我们可以当成特殊元素对待,设空座梯形依次编号为1、2、3、4、5、6、7・先选定两个空位.可以在1、2号位,也可以在2、3号位…共有六种可能,再安排另一空位,此时需看到,如果空位在1、2号,则另一空位可以在4、5、6、7号位,有4种可能,相邻空位在6、7号位,亦如此・如果相邻空位在2、3号位,另一空位可以在5、6、7号位,只有3种可能,相邻空位在3、4号,4、5号,5、6号亦如此,所以必须就两相邻空位的位置进行分类.本題的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻・

解答一:

就两相邻空位的位置分类:

若两相邻空位在1、2或6、7,共有2x4xA:

=192(种)坐法.

若两相邻空位在2、3,3、4,4、5或5、6,共有4x3xA"=288(种)不同坐法,所以所有坐法总数为192+288=480(种).

解答二:

先排好4个人,然后把两空位与另一空位插入坐好的4人之间,共有眉.Ar=480(种)不同坐法.

解答三:

本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相邻的情况,4个人任意坐到7个座位上,共有A;种坐法,三个空位全相邻可以用合并法,直接将三个空位看成一个元素与其它座位一起排列,共有种不同方法.三个空位全不相

邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隔中,有×10种不同方法,所以,所有满足条件的不同坐法种数为A;-A^-IO^=480(种)・

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1