证明四点共圆.docx

上传人:b****5 文档编号:4608187 上传时间:2022-12-07 格式:DOCX 页数:7 大小:15.82KB
下载 相关 举报
证明四点共圆.docx_第1页
第1页 / 共7页
证明四点共圆.docx_第2页
第2页 / 共7页
证明四点共圆.docx_第3页
第3页 / 共7页
证明四点共圆.docx_第4页
第4页 / 共7页
证明四点共圆.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

证明四点共圆.docx

《证明四点共圆.docx》由会员分享,可在线阅读,更多相关《证明四点共圆.docx(7页珍藏版)》请在冰豆网上搜索。

证明四点共圆.docx

证明四点共圆

证明四点共圆

方法1

从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2方法3

方法4同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

)把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理); 或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(割线定理的逆定理)方法5

证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,可肯定这四点共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明

四点共圆的证明方法有以下五种,本例用的是第二种方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆; 或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.

方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆; 或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)

方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.

判定与性质:

圆内接四边形的对角和为π,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,。

角CBE=角ADC(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP某CP=BP某DP(相交弦定理)EB某EA=EC某ED(割线定理)

EF某EF=EB某EA=EC某ED(切割线定理)(切割线定理,割线定理,相交弦定理统称圆幂定理)AB某CD+AD某CB=AC某BD(托勒密定理Ptolemy)

方法1把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

方法2把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

四点共圆的判定是以四点共圆的性质的基础上进行证明的。

四点共圆的性质:

(1)同弧所对的圆周角相等

(2)圆内接四边形的对角互补

(3)圆内接四边形的外角等于内对角

以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。

四点共圆的判定定理:

方法1把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(可以说成:

若线段同侧二点到线段两端点连线夹角相等,那末这二点和线段二端点四点共圆)

方法2把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

(可以说成:

若平面上四点连成四边形的对角互补或一个外角等于其内对角。

那末这四点共圆)

我们可都可以用数学中的一种方法; 反证法开进行证明。

现就“若平面上四点连成四边形的对角互补。

那末这四点共圆”证明如下(其它画个证明图如后)已知:

四边形ABCD中,∠A+∠C=π

求证:

四边形ABCD内接于一个圆(A,B,C,D四点共圆)

证明:

用反证法

过A,B,D作圆O,假设C不在圆O上,刚C在圆外或圆内,若C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=π,∵∠A+∠C=π∴∠DC’B=∠C

这与三角形外角定理矛盾,故C不可能在圆外。

类似地可证C不可能在圆内。

∴C在圆O上,也即A,B,C,D四点共圆。

四点共圆的定义:

如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”

方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆.

方法3把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

方法4把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法5把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆; 或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.

方法6证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.

上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.

判定与性质:

圆内接四边形的对角和为180度,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB至E,AC、BD交于P,则A+C=180度,B+D=180度,

角ABC=角ADC(同弧所对的圆周角相等)。

角CBE=角D(外角等于内对角)

△ABP∽△DCP(三个内角对应相等)

AP某CP=BP某DP(相交弦定理)

AB某CD+AD某CB=AC某BD(托勒密定理)

方法

1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。

方法

2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

方法

3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

方法

4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(根据相交弦定理的逆定理); 或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆。

(根据托勒密定理的逆定理)

方法

5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.判定与性质:

圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,

角DBC=角DAC(同弧所对的圆周角相等)。

角CBE=角ADE(外角等于内对角)

△ABP∽△DCP(三个内角对应相等)

AP某CP=BP某DP(相交弦定理)

EB某EA=EC某ED(割线定理)

EF某EF=EB某EA=EC某ED(切割线定理)

(切割线定理,割线定理,相交弦定理统称圆幂定理)

AB某CD+AD某CB=AC某BD(托勒密定理Ptolemy)

弦切角定理

方法6

同斜边的两个RT三角形的四个顶点共圆,其斜边为圆的直径。

如何判定四点共圆

1、圆的内接四边形的两对角和是180度,反之,如果四边形的两对角和是180,那么四点共圆。

2、在圆里,同弦角相等。

设A、B、C、D四点在圆上,明显,AB弦所对的角∠ACB=∠ADB。

反之,如果∠ACB=∠ADB,那四点共圆。

常用的就是这两个

四点共圆

方法1

从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2

把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

)(可以说成:

若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法3

把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.(可以说成:

若平面上四点连成四边形的对角互补或一个外角等于其内对角。

那么这四点共圆)

方法4

把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆; 或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.

方法6

同斜边的两个RT三角形的四个顶点共圆,其斜边为圆的直径

判定与性质:

圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,

角DBC=角DAC(同弧所对的圆周角相等)。

角CBE=角ADE(外角等于内对角)

△ABP∽△DCP(三个内角对应相等)

AP某CP=BP某DP(相交弦定理)

四点共圆的图片

EB某EA=EC某ED(割线定理)

EF某EF=EB某EA=EC某ED(切割线定理)

(切割线定理,割线定理,相交弦定理统称圆幂定理)

AB某CD+AD某CB=AC某BD(托勒密定理Ptolemy)

弦切角定理

四点共圆的判定定理:

用反证法证明

现就“若平面上四点连成四边形的对角互补。

那么这个四点共圆”证明如下(其它画个证明图如后)

已知:

四边形ABCD中,∠A+∠C=180°

求证:

四边形ABCD内接于一个圆(A,B,C,D四点共圆)

证明:

用反证法

过A,B,D作圆O,假设C不在圆O上,点C在圆外或圆内,

若点C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=180°,

∵∠A+∠C=180°∴∠DC’B=∠C

这与三角形外角定理矛盾,故C不可能在圆外。

类似地可证C不可能在圆内。

∴C在圆O上,也即A,B,C,D四点共圆。

圆证明

绩点证明(共8篇)

时点证明(共7篇)

存款时点证明

四级证明(共4篇)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 自考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1