圆形磁场中的几个典型问题.docx

上传人:b****5 文档编号:4535001 上传时间:2022-12-01 格式:DOCX 页数:23 大小:489.13KB
下载 相关 举报
圆形磁场中的几个典型问题.docx_第1页
第1页 / 共23页
圆形磁场中的几个典型问题.docx_第2页
第2页 / 共23页
圆形磁场中的几个典型问题.docx_第3页
第3页 / 共23页
圆形磁场中的几个典型问题.docx_第4页
第4页 / 共23页
圆形磁场中的几个典型问题.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

圆形磁场中的几个典型问题.docx

《圆形磁场中的几个典型问题.docx》由会员分享,可在线阅读,更多相关《圆形磁场中的几个典型问题.docx(23页珍藏版)》请在冰豆网上搜索。

圆形磁场中的几个典型问题.docx

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题

许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错•常见问题分别是“就值问题、汇聚发散问题、边界交点问題、周期性问题:

对于这些问題,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.

一、最值问题的解題关键一抓戏长

1.求最长时间的问題

例1真空中半径为R=3X102m的圆形区域内,有一磁感应强度为B二的匀强磁场,方向如图1所示一带正电的粒子以初速度vo=106m/s从磁场边界上直径ab一端a点处射入繼场.已知该粒子比荷为q/m=108C/kg,不计粒子莹力,若要使粒子飞离磁场吋偏转角最大,其入射时粒子初速度的方向应如何(以vo与Oa的夹角0表示)最长运动时间多长

小结:

本題涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.

2・求眾小面积的问題

例2—带电质点的质量为叫电董为q,以平行于Ox轴的速度v从y轴上的a点射人如图3所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的罠小面积,重力忽略不计.

小结:

这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动扌九迹求所加國形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1/4圆弧必须包含在磁场区域中且圆运动起点.终点必须是磁场边界上的点,然后再考虑磁场的最小半径.

上述两类“最值”问題,解题的关键是要找出带电粒子做圆周运动所对应的弦长.

二、汇聚发散问题的解题关键——抓半径

当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;

a

规律一:

带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹

半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

规律二:

平行射入圜形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所

有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。

例3如图5所示,x轴正方向水平向右,y轴正方向竖直向上.在半径为R的圆形区域内加一与xoy平面垂直的匀强緘场.在坐标原点0处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m、电荷量q(q>0)且初速为Vo的带电粒子,不计重力.调节坐标原点0处的带电微粒发射装置,使其在xoy平面内不断地以相同速率V0沿不同方向将这种带电微粒射入X轴上方,现要求这些带电微粒灵终都能平行于X轴正方向射出,则带电微粒的速度必须满足什么条件

小结:

研究粒子在圆形磁场中的运动时,要抓住圆形磁场的半径和圖周运动的半径,建立二者之间的关系,再根据动力学规律运动规律求解问題.

3•如图甲所示,x轴正方向水平向右,y轴正方向竖直向上。

在xoy平面内有与y轴平行的匀强电场,在半径为R的圆形区域内加有与xoy平面垂直的匀强磁场。

在坐标原点0处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m、电荷量q(?

>°)

和初速为卩0的带电粒子。

已知重力加速度大小为go

(1)当带电微粒发射装置连续不断地沿y轴正方向发射这种带电微粒时,这些带电微粒舟沿圆形磁场区域的水平直径方向离开濮场,并继续沿x轴正方向运动。

求电场强度和磁感应强度的大小和方向。

•・•

(2)调节坐标原点处的带电微粒发射装置,使其在xoy平面内不断地以相同速率vO沿不同方向将这种带电微粒射入第1象限,如图乙所示。

现要求这些带电微粒爺终梆能平行于X轴正方向运动,则在保证匀强电场、匀强磁场的强度及方向不变的条件下,应如何改变匀强磁场的分布区域并求出符合条件的磁场区域的最小面积。

答案

(1)(8分)由题目中“带电粒子从坐标原点0处沿y轴正方旬进入磁场后,最g豁圆形磁场区域的水平言径走开磁场并继续沿x轴正方向运动”可知.带电微粒所受重力与电场力平衡。

设电场強度大小为匚由平衡条件得,

吨=qE:

・E二哩电场方向沿,轴正方旬

q

带电微粒进入磁场后,做匀速圆周运动,且圆运动半径r=R°<

设匀程磁场的恣塞应强度大小为B。

由牛顿笫二定律得:

 

3.边界交点问题的解题关键一抓轨迹方程

例4如图7所示,在xoy平面内x>0区域中,有一半圆形匀强磁场区域,圆心为0,半径为R=0.10m,磁感应强度大小为B=,磁场方向垂直xoy平面向里.有一线状粒子源放在y轴左侧(图中未画出),并不斷沿平行于x轴正方向释放出电荷量为q=+X10”C,初速度vo=X10m/s的粒子.粒子的质量为m=X10-26kg,不考虑粒子间的相互作用及粒子重力,求:

从y轴任意位置(0,y)入射的粒子离开磁场时的坐标.

点评:

带电粒子在磁场中的运动是最能反映抽象思维与数学方法相结合的物理模型,本题則利用圆形彪场与圆周运动轨迹方程求交点.是对初等数学的抽象运用,能较好的提高学生思维・

4.周期性问题的解題关键——寻找圆心角

图9

1・粒子周期性运动的问题

例5如图9所示的空间存在两个匀强磁场,其分界线是半径为R的國,两侧的磁场方向相反且垂直于纸面.磁感应强度大小都为B•现有一质莹为m、电荷董为q的带正电粒子(不计重力)从A点沿aA方向射出.求:

(1)若方向向外的磁场范国足够大•离子自A点射出后在两个磁场不斯地飞进飞出,灵后又返回A点,求返回A点的最短时间及对应的速度.

(2)若向外的磁场是有界的,分布在以0点为圆心、半径为R和2R的两半圆环之间的区域.上述粒子仍从A点沿QA方向射出且粒子仍能返回A点,求其返回A点的最短时间.

2.磁场发生周期性变化

例6如图12所示,在地面上方的真空室内,两块正对的平行金属板水平放置.在两

田14

板之间有一匀强电场,场强按如图13所示规律变化(沿y轴方向为正方向)

在两板正中间有一圆形匀强磁场区域,磁感应强度按图14所示规律变化,如果建立如图12所示的坐标系,在t=0时刻有一质量m=X10\g、电荷量q=X10C的带正电的小球,以v

小结:

对于周期性问题,因为粒子运动轨迹和磁场边界都是圆,所以要充分利用圆的对称性及圆心角的几何关系.寻找运动轨迹的对称关系和周期性.

五、琏场问题的规律

前面分析的六个典型例题,其物理情景各异,緊简不同,但解题思路和方法却有以下四个共同点.

(1)物理模型相同即带电粒子在匀强磁场中均做匀速圖周运动.

1.如图所示,在半径为/?

的圆形区域内充满磁感应强皮为8的匀强磁场,剜是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为G质量为%速度为y的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是()

D

A.只要对着圆心入射,出射后均可垂直打在剜上

B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心

C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长

D.只要速度满足v=密,沿不同方向入射的粒子出射后均可垂直打在滋上m

2.如图所示,长方形訪刃的长ad=Q.6m,宽ab=Q.3m,0、e分别是md、力的中点,以e

为圆心为半径的四分之一圆弧和以0为圆心加为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀修磁场(边界上无磁场)磁感应强度B=.一群不计重力、质董m=3X107kg.电荷#q=+2X103C的带正电粒子以速度厂5X102m/s沿垂直日〃方向且垂直于磁场射人磁场区域,則下列判斷正确的是()

CD

A.从加边射入的粒子,出射点全部分布在防边

B.

解:

从日0边射入的粒子,出射点全部分布在"边

/?

=—

(1)带电粒子在魏场中做匀速圆周运动的半径qB

由图可知,=60°

越场区域最小半径lqB

S”竺算

磁场区域最小面积輛B

T2碗

^=—=

(2)

粒子从0至a做匀速圆周运动的时间3ZqB,从a飞出磁场后做匀速直线运动

 

•ctb=^R

••

ab忑R叫疗畑?

2===

 

sin30°=

⑶•••

•0¥=2R

3z«v0

故b点的坐标为(今吕,0)

5.如图所示,在坐标系“op内有一半径为日的圆形区域,圆心坐标为a(彳0),圆内分布有垂直纸面向里的匀强磁场,在直线尸日的上方和直线厂2日的左侧区域内,有一沿x轴负方向的匀强电场,场强大小为&一质量为m、电荷量为+g(g>0)的粒子以速度#从0点垂直于縊场方向射入,当入射速厦方向沿”轴方向时,粒子恰好从d点正上方的A点射出磁场,不计粒子重力,求:

(1)磁感应强度8的大小:

(2)粒子离开第一象限时速度方向与y轴正方向的夹角;

(3)若将电场方向变为沿F轴负方向.电场强度大小不变,粒子以速度#从0点垂直于磁场方向、并与”轴正方向夹角&二30°射入第一象限.求粒子从射入磁场到灵终离开施场的总时间to

 

qvB=

(1)设粒子在磁场中做圆运动的轨迹半径为R,牛顿第二定律有

粒子自A点射出,由几何知识尺=

(2)粒子从A点向上在电场中做匀滅运动,设在电场中滅速的距离为屮

12

一Eqy、=0-—mv

yi=

mv2

lEq

 

mv1

a+

所以在电场中最高点的坐标为(a,2Eq)

2?

ra

(3)粒子在磁场中做圆运动的周期

粒子从磁场中的P点射出,因磁场圆和粒子的轨迹圆的半径相等,00,P02构成菱形,故粒子从P点的出射方向与y轴平行,粒子由0到P所对应的圆心角为9f60°

 

由几何知识可知,粒子由P点到x轴的距离S=acos6

=—~

粒子在电场中做匀变速运动,在电场中运动的时间彳应

粒子由P点第2次进入磁场,由Q点射出,POQOj构成菱形,由几何知识可知Q点在x轴上,粒子由P到Q

的偏向角为02=120°

则q+乌-71

T

^2=~

粒子先后在磁场中运动的总时间2

h=

粒子在场区之间做匀速运动的时间

V

解得粒子从射入磁场到置终离开廡场的时间

(2+开一羽)口

 

【答案】

(1分)

wv

轨迹如图。

【解析】

(1)由题意可得粒子在麼场中的轨迹半径为r二

(2)所有粒子在电场中做类平抛运动(1分)

从0点射出的沿x轴正向的粒子打在屏上最低点

(1分)

(1分)

从0点沿y轴正向射出的粒子打在屏上最高点

(1分)

 

(1分)

 

所以粒子打在荧光屏上的范围为

~lima

Q+FI

(1分)

讥E“TgE

(3)粒子在磁场中做匀速圆周运动,出殘场时:

—60:

(2分)

 

-wv*=qE$

2'(2分)

 

wv2

2qE

(1分)

 

(—.61+J

所以在电场中置远坐标为22qE)(1分)

因为粒子的轨迹半径与黴场的边界半径相等,粒子返回磁场后射入点和射出点与轨迹圆心及磁场的边界圆心的连线构成棱形。

所以最后射出磁场的坐标为

(2a,0)(2分)

(4)可以加一个匀强磁场或者两个方向不同的匀强电场方向如图,

大小与已知条件相同(2分)

 

1-1

E

//r

0

yA9

x=2右

C

A

///

/

\1

1i

E

CX

6.如图所示的直角坐标系中,从直线斫-2/。

到y轴区域存在两个大小相等、方向相反的有界匀强电场,其中“轴上方的电场方向沿y轴负方向,x轴下方的电场方向沿y轴正方向。

在电场左边界从A

(-2/o,一/。

)点到C(一2/。

,0)点区域内,连续分布着电量为+6质量为刃的粒子。

从某时刻是,A点到C点间的粒子依次连续以相同速度%沿”轴正方向射入电场。

从力点射入的粒子恰好从y轴上的A'(0,-/。

)点沿沿"轴正方向射出电场,其轨迹如图所示。

不计粒子的重力及它们间的相互作用。

(1)求从力0间入射的粒子穿越电场区域的时间十和匀强电场的电场强度F的大小。

(2)求在力、C间还有哪些坐标位置的粒子通过电场后也能沿"轴正方向运动

(3)为便于收集沿"轴正方向射出电场的所有粒子,若以直线厂2/。

上的某点为圆心的圆形磁场区域内,设计分布垂直于/平面向里的匀强磁场,使得沿x轴正方向射出电场的粒子经磁场偏转后,都能通过w2/°与國形磁场边界的一个交点。

则歿场区域置小半径是多大相应的磁感应强慶8是多大解析:

运动轨迹和对称性

(1)从A点射出的粒子,由A到A'的运动时间为T,根扌居

粒子从电场射出时的速度方向也将沿x轴正方向,則2厶二(2分)

 

即AC间y坐标为«(n=1,2,3,……)(1分)

y/m

7.

如图所示,在*oy坐标系中分布着三个有界场区:

第一象限中有一半径为r=Q.1m的岡形磁场区域,磁感应强度&二1人方向垂

直纸面向里,该区域同时与"轴、y轴相切.切点分别为4G;第四象限中,由y轴、抛物线FG(y=-10F+x—0・025,单位:

m)和直线0"(y=x—0・425,单位:

m)构成的区域中,存在着方向竖直向下、强度£0的匀强电场;以及直线ZW右下方存在垂直纸面向里的匀强琏场乐。

现有大量质#/7FlX106kg(重力不计),电量大小为<7=2X104Ct速率均为20m/s的带负电的粒子从」处垂直磁场进入第一象限,速度方向与y轴夹角在0至180°之间。

(1)求这些粒子在圆形磁场区域中运动的半径:

(2)试证明这些粒子经过"轴时速慶方向均与"轴垂直:

(3)通过计算说明这些粒子会经过y轴上的同一点,并求出该点坐标。

〔3分)

(2分)

并将珀二-10/+X_0.025fty2=x-0.42亍代入得

尺2=£°分)设其从k点离开磁场,01和

02分别是殘场区域和圆周运动的圆心,因为國周运动半径和殘场区域半径相同,因此01A02K

为菱形,离开磁场吋速度垂直于02K,即垂直于x轴,得证。

(6分)

(3)设粒子在第四象限进入电场时的坐标为(x,y1),离开电场时的坐标为(x,y2),离开电场时速度为v2,在B2磁场区域做圆周运动的半径为R2.有

□mv

得尺]=0.1加

〔3分)

(扮]

因v2的方向与DH成45o,且半径刚好为x坐标值,则粒子做圆周运动的圆心必在y轴上,在此黴场中恰好经过四分之一圆周,并且刚好到达H处,H点坐标为

(0,)o(3分

8•如图所示,半圆有界匀强磁场的圆心d在”轴上,%距离等于半圆殘场的半径,磁感应

强度大小为3。

虚线剜平行"轴且与半圆相切于P点。

在剜上方是正交的

匀强电场和匀强磁场,电场场强大小为&方向沿x轴负向,磁场磁感应强度大小为叽氐$方向均垂直纸面,方向如图所示。

有一群相同的正粒子,以相同的速率沿不同方向从原点0射入第I象限,其中沿“轴正方向进入磁场的粒子经过P点射入例后.恰好在正交的电磁场中做直线运动,粒子质量为〃,电荷量为g(粒子重力不计)。

求:

(1)粒子初速度大小和有界半圆磁场的半径。

(2)若撤去磁场3,則经过P点射入电场的粒子从y轴出电场时的坐标。

(3)试证明:

題中所有从原点0进入第I象限的粒子都能在正交的电磁场中做直线运动。

(3)见程析

24.

(2分)

(2分)

 

由题意知粒子在磁场&中國周运动半径与该磁场半径相同,

(2分)

(2分)

(2)在电场中粒子做类平抛运动:

Im

(2分)

(3分)

(2分)

 

(5分)

(3)证明:

设从0点入射的任一粒子进入B磁场时,速度方向与x轴成6角.粒子出B磁场与半圆磁场边界交于Q点,如图所示,找出轨迹圆心,可以看出四边形OOOQ四条边等长是平行四边形,所以半径02Q与00i平行。

所以从Q点出縊场速厦与O2Q垂直,即与x轴垂直,所以垂直进入MN边界。

进入正交电磁场E、B?

中都有$屁=匹故做直线运动。

9.如图所示,真空中一平面直角坐标系朮少内,存在着两个边长为丄的正方形匀强电场区域I.II和两个直径为厶的圆形磁场区域III.IVo电场的场强大小均为£区域I的场强方向沿"轴正方向,其下边界在"轴上,右边界刚好与区域II的边界相切:

区域II的场强方向沿y轴正方向,其上边界在x轴上,左边界刚好与刚好与区域IV的边界相切。

磁场的磁感应强度大小均为2—,区域III的圆心坐标为(0.土)、磁场方向垂直于X0/平面向外;区

YqL2

域IV的圆心坐标为(0.-土)、磁场方向垂直于"/平面向里。

两个质量均为叭电荷量均2

为q的带正电粒子“、N、在外力约束下静止在坐标为(一」厶,-)>(--L,土迺厶)

2224

的两点。

在"轴的正半轴(坐标原点除外)放置一块足够长的感光板,板面垂直于平面。

将粒子"、"由跻止释放,它们最终打在感光板上并立即被吸收。

不计粒子的重力。

求:

(1)粒子离开电场I时的速度大小。

(2)粒子〃击中感光板的位置坐标。

(3)粒子"在磁场中运动的时间。

"・(19分)怡⑴粒皿区城14哒动.由为就定理側旳尸寺如』(2分)

W

解得(2分》

《或根期牛&第二定律

(2>t»f在建场中做匀連阀W运动运动•由牛侦那二定律卯£3—肌字<2^>

凶"密.故宀需气"知

闵M达劝的紈通半径与58场IX域的半径柿问・故M在磁场11中运分之一个周期看经辻氏点进人雜场IV.牌运动四分之-个用期后平行于丄紬止力•向离开48场・然后II人

电场11效类平地迂动

假i4M电场垢即打紬的嬪光扳上

WMfrill场中话动时M/--

<2^>

沿电场力蚀ft.v和;寺X普X住)杯<权

(1分〉

⑶n做関谢迄為的轨进半胫马磴场就域的半咨相詢・分析可他,\书从/,点诜入絶场.

由七标麻点。

漓开魏场B!

进入感场1\•恢G从d点离开磯场J\・兀部分做逵如图

2x>于fzr/re场中运动的谢期r——二

<1分)

所以粒子"雀场hi中迄动的时间厶焉丁二钊哥

fti廿称艾系得粒fn:

a场hi・iv中运动时创in同

故秽他匹场中运动的时泗/"认哥

a分〉

 

10.一质量为m、电荷董为+q的粒子以速慶%,从0点沿y轴正方向射入磁感应强度为

B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强为氏方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图所示,粒子的重力不计,试求:

(1)圆形匀强磁场区域的最小面积:

(2)c点到b点的距离。

3^w2Vq4y/Sfn^

(1)⑵qE

11.如图甲所示,质#/zfX10-25kg,电荷量沪X10"C的带正电粒子从坐标原点0处沿“0F平面射入第一象限内,且在与x方向夹角大于等于30°的范围内,粒子射入时的速度方

向不同,但大小均为kb=X107m/so现在英一区域内加一垂直于M平面向里的匀强磁场,磁感应強度大小若这些粒子穿过磁场后都能射到与y轴平行的荧光屏剜上,并且当把荧光屏MN向左移动吋,屏上光斑长度和位置保持不变。

(n=求:

(1)粒子从y轴穿过的范国。

(2)荧光屏上光斑的长度。

(3)从最爲点和最低点打到荧光屏剜上的粒子运动的时间差。

(4)画出所加磁场的最小范围(用斜线表示)。

71

(1)0一一的R

(2)^=(1+V3)r(3)t二(12+0.5)X10eS解析:

设磁场中运动的半径为R,牛顿第二定律得:

解得

R=0.1m

(2分)

当把荧光屏MN向左移动时,屏上光斑长度和位置保持不变,说明电子出射方向平行,都沿-x方向,所加磁场为圆形,半径为

R二。

(1分)

(1)电子从y轴穿过的范国:

初速度沿y轴正方向的粒子直接过y

轴(1分)

速度方向在与x方向成30。

的粒子,转过的角00:

A为

120°,(2分)

粒子从y轴穿过的范

围0__a/3R

(1分)

(2)如图所示,初速度沿y轴正方向的粒子,

yt=R(1分)

速度方向在与X方向成30。

的粒子,转过的圆心角00:

B为150:

0QA二&二30,

y尸R+Rcos9

(2分)

?

荧光屏上光斑的长度(1+盯丹(2

分)

(3)例子旋转的周期

2江R2m

(1分)

T二vo=qB二兀X1OBS

在黴场中的时间

差t=12T

(1分)

出琨场后,打到荧光屏的时间

(1分)

(1

差“2“

从最高点和最低点打到荧光屏MN上的粒子运动的时间差。

7U

t=t-tF(12+0・5)X10aS

分)

(4)范国见答案图12、如图所示,直线剜下方无磁场.上方空间存在两个匀强磁场I和II,其分界线是以0为圆心、半径为/?

的半圆弧,I和II的磁场方向相及且垂直于纸面,磁感应强度大小都为

B。

现有一质量为弘电荷量为g的带负电微粒从P点沿PM方向向左侧射出不计微粒的重力。

P、0.Q三点均在直线MN上,求:

(1)若微粒只在磁场I中运动,能否到达Q点

_2加

I=

(1)必

13•如图所示,直线MN下方无磁场,上方空间存在两个匀强磁场,其分界线是半径为R的半圆,两侧的磁场方向相反且垂直于纸面,磁感应强度大小都为B.现有一质董为m、电荷董为q的带负电微粒从P点沿半径方向向左侧射出,最终打到Q点,不计微粒的重力.求:

(1)微粒在磁场中运动的周期.

(2)从P点到Q点,微粒的运动速度大小及运动时间.

(3)若向里磁场是有界的,分布在以O点为圆心、半径为R和2R的两半國之间的区域,上述微粒仍从P点沿半径方向向左侧射出,且微粒仍能到达Q点,求其速度的最大值.

 

 

I

(1)

BqRBgRjT

乜二一tan—m(3)v坊?

2?

?

(粹=2阳…)

(1)

3(各式2分,共6分)

如右图所示(2分,画出示意图或用表述的方式说明运动轨迹,正确就给分。

 

轨道半径r=MR

=m—

(3分)

则由亠丫解得

Q-乞,〜

(3)如图所示,严=2戈4……)(3分)

 

(2分)

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小升初

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1