非平衡直流电桥.docx

上传人:b****6 文档编号:4428324 上传时间:2022-12-01 格式:DOCX 页数:23 大小:405.46KB
下载 相关 举报
非平衡直流电桥.docx_第1页
第1页 / 共23页
非平衡直流电桥.docx_第2页
第2页 / 共23页
非平衡直流电桥.docx_第3页
第3页 / 共23页
非平衡直流电桥.docx_第4页
第4页 / 共23页
非平衡直流电桥.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

非平衡直流电桥.docx

《非平衡直流电桥.docx》由会员分享,可在线阅读,更多相关《非平衡直流电桥.docx(23页珍藏版)》请在冰豆网上搜索。

非平衡直流电桥.docx

非平衡直流电桥

非平衡直流电桥

直流电桥是一种精密的电阻测量仪器,具有重要的应用价值。

按电桥的测量方式可分为平衡电桥和非平衡电桥。

平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥(惠斯登电桥)、双臂直流电桥(开尔文电桥)。

它们只能用于测量具有相对稳定状态的物理量,而在实际工程中和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量;非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行运算处理,从而得到引起电阻变化的其它物理量,如温度、压力、形变等。

[实验目的]

1、直流单臂电桥(惠斯登电桥)测量电阻的基本原理和操作方法;

2、非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法;

[实验原理]

FQJ-Ⅲ型教学用非平衡直流电桥包括单臂直流电桥,双臂直流电桥,非平衡直流电桥,下面对它们的工作原理分别进行介绍。

(一)单臂电桥(惠斯登电桥)单臂电桥是平衡电桥,其原理见图1,图2为FQJ-Ⅲ型的单臂电桥部分的接线示意图。

图1中:

R1、R2、R3、R4构成一电桥,A、C两端供一恒定桥压Us,B、D之间为有一检流计G,当平衡时,G无电流流过,BD两点为等电位,则:

UBC=UDC,I1=I4,I2=I3下式成立:

I1R1=I2R2

I3R3=I4R4

由于R4=Rx,于是有

R1R3

R2R4

R4为待测电阻Px,R3为标准比较电阻,式中K=R1/R2,称为比率,一般惠斯登电桥的K有0.001、0.01、0.1、1、10、100、1000等。

本电桥的比率K可以任选。

根据待测电阻大小,选择K后,只要调节R3,使电桥平衡,检流计为0,就可以根据

(1)式得到待测电阻Rx之值。

RxR1R3KR3

(1)

xR233

使单臂

(二)双臂电桥(开尔文电桥)由于单臂电桥未知臂的内引线、被测电阻的连接导线及端钮的接触电阻等影响,

电桥测量小电阻时准确度难以提高,双臂电桥较好地解决了测量小电阻时线路灵敏度、引线、接触电阻所带来的测量误差,而且属于一次平衡测量,读数直观、方便。

图3为双臂电桥原理图,图4为FQJ-Ⅲ型的双臂电桥部分接线示意图。

图4双桥测量线路

R1、R3′构成另一臂,被测电阻Rx和标准电阻RN均采用四端接法,C1、C1′两个电流端,接电源回路,从而将这两端的引线电阻、接触电阻折合到电源回路的其它串联电阻中,P1、P2、P1′、P2′是电压端,通常接测量用的高

电阻回路或电流为零的补偿回路,使这它们的引线电阻和接触电阻对测量的影响大为减少。

C2、C2′两个电流端的附加电阻和连线电阻总和为r,只要适当调整R1、R2、R3、R3′的阻值,

就可以消除r对测量结果的影响。

当电桥平衡时,得到以下三个回路方程:

I1R3I3RXI2R3

I1R2I2R1I3RN

I1(R1R3')(I3I2)r

从而求得

R3rR1R3R3

Rx3RN1(33)

xR2NR1R3rR2R1

从式中可以看出,双臂电桥的平衡条件与单臂电桥的平衡条件的差别在于多出了式中的第二项。

如果满足以下条件R3R3,则双臂电桥的平衡条件为:

在本电桥内部,通过特殊结构,使R3、R3′保持同步,处于任意位置都能保持相等,R1

和R2则是10可调节电阻,只要调节到R1=R2即可。

(3)非平衡电桥非平衡电桥原理如图5所示:

B、D之间为一负载电阻Rg,只要测量电桥输出率。

1、电桥分类

(1)等臂电桥:

R1=R2=R3=R4

(2)

Vg、Ig,就可得到Rx值,并求得输出功

输出对称电桥,也称卧式电桥:

R1=R4=R,R2=R3=R′。

且R≠R。

(3)电源对称电桥,也称为立式电桥:

R1=R2=R′,R3=R4=R,且R≠R′。

2、输出电压

Ig=0,仅有电压输出并用U0表示,

Us,通过R1、R4两臂的电流为:

I1I4

Us

R1R4

当负载电阻Rg→∞,即电桥输出处于开路状态时,根据分压原理,ABC半桥的电压降为5非平衡电桥的原理

则R4上之电压降为:

输出电压U0为UBC与UDC之差

(9)

面(7)~(9)三公式的分母中含△R项可

RR

U0Us(RR')2

当电阻增量△R较小时,即满足△R《R时,略去,公式可得以简化,这里从略。

注意:

上式中的R和其R′均为预调平衡后的电阻。

测量得到电压输出后,通过上述公式运算得△R/R或△R,从而求得R4=R4+△R或Rx=Rx+△R。

等臂电桥、卧式电桥输出电压比立式电桥高,因此灵敏度也高,但立式电桥测量范围大,可以通过选择R、R′来扩大测量范围,R、R′差距愈大,测量范围也愈大。

图6

3、输出功率

当负载电阻Rg较小时,则电桥不仅有电压输出Ug,也有电流输出Ig,也就是说有功率

输出,此种电桥也称为功率桥。

可测出Ig和Ug。

功率桥可以表示为图6(a)。

应用有源端口

网络定理,功率桥可以简化为图6(b)所示电路。

UBD为DB之间的开路电压,由(5)式表示,图6(b)中的R″是有源一端网络等值支路中的电阻,其值等于该网络入端电阻Rr,参见图6(c)

R2R4R1R3

(R1R4)(R2R3)R1R4(R2R3)R2R3(R1R4)

当Ig=0时则有

R2R4R1R30,

R1R4

R2R3

这是功率桥的平衡条件,与(6)式一致,也就是说功率输出与电压输出的平衡条件是一致的。

最大功率输出时,电桥的灵敏度最高。

当电桥的负载电阻Rg等于输出电阻(电源内阻)

即阻抗匹配时

则电桥输出功率最大。

此时电桥的输出电流由(10)式得:

(12)

R2R4R1R3

2R1R4(R2R3)R2R3(R1R4)

输出电压为

USR2R4R1R3

UgIgRgS2413

2(R2R3)(R1R4)

(13)

当桥臂R4的电阻臂有增量△R时,我们可以得到三种桥式的电流、电压和功率变化。

测量时都需要预调平衡,平衡时的状态时讲的。

不同桥式的三组公式分别为

(1)等臂电桥US

2

Ig、Vg、

Pg均为0,电流、

电压、功率变化都是相对平衡

Ig

R1=R2=R3=R4=R,则有RR2R2(RR)R2(2RR)

US

8

R

R2

1

3R

1

4R

(14)

Ug

US

8

R

R2

1

1R

2R

(2)卧式电桥

Pg

Ig

US2

64R

(RR)2

1

3RR

(1)

(1)4R2R

R1=R4=R,R2=R3=R′,

则有

Ig

US

2

22R2R

R'R

''2'2

2RR'R2R(R')2(R')2R

US

4(RR')

R1

R2RR'1'2(RR')

(15)

US

1

11R

2R

PgIgUg

US2

32(RR')(RR)2

2RR'R

1'

2(RR')R

1

R

1

2R

(3)立式电桥

R1=R2=R′,R3=R4=R,

△R4=△R,则有

US

Ig4(RR')

R1

R2RR'1'2(RR')

(16)

UgUSg2

RR'R

1

(RR')2R1R

1RR'

 

2'

US2RR'

PgIgUg'3()'

ggg8(RR')3R2RR'RR

1'1'2(RR')RRR'

△Pg,通过上述相关公式可运算到相应的

测得△Ig和△Ug后,很方便可求得功率和△RU,然后运用公式

△RI

 

RRIRV(17)

得到△R后,同理可得RX=R4+△R。

当电阻增量△R较小时,即满足△R《R时,上面(14)~(16)三组公式的分母含△R项可略去。

公式得以简化,这里从略。

[实验仪器]

1、FQJ-Ⅲ型用非平衡直流电桥

2、FQJ非平衡电桥加热实验装置

3、FB901型电阻测试板

四、实验内容及方法

图7为FQJ-Ⅲ型非平衡电桥的面板示意图:

(1)用惠斯登电桥测量电阻

1、二端法测量:

a、量程倍率设置:

为了提高学生的动手能力,电桥的量程倍率可视被测电阻的大小自行设置。

方法是:

通过面板上的R1、R2两组开关来实现,如“×1”倍率,可分别在R1、

R2两组的“×1000”盘上打“1”其余盘均为0;“×102”倍率可在R1的“×1000”盘打“1”,R2的“×10”盘打“1”其余盘均为0⋯⋯由此可组成下表中分别不同的量程倍率。

表1

量程倍率

有效量程(Ω)

准确度%

电源电压(V)

×10-3

1×11.11

2

5

×10-2

10~111.11

0.2

5

×10-1

100~1111.1

0.2

5

×1

1~11.111K

0.2

5

×10

10K~111.11K

1

15

×102

100K~1111.1K

2

15

×103

1M~11.111M

10

15

b、将“双桥量程倍率选择”开关置于“单桥”位置,“功能、电压选择”开关置于“单

桥(5V)”或“单桥15V”(可按表1所示选择),并接通电源。

c、按图8所示,在“Rx”与Rx1之间接上被测电阻,R3测量盘打到与被测电阻相应的数字,按下G、B按钮,调节R3,使电桥平衡(电流表为0)。

 

图8电桥的两端接法

2、三端法测量单臂电桥采用三端法测量电阻能有效地消除引线电阻带来的测量误差,因此采用三端法可进行在线远程电阻的测量。

在实验时,可用专用的电阻测试板进行模拟测试,为了验证三种测量方法的不同,致使测量结果的不同,可先采用二端法测量,例如取8.2kΩ被

测电阻接在电阻测试板(图9)的待测电阻端,“待测电阻端”与“电桥输入端”之间跨接了相当于在1000米

远距离的导线(该导线是2.5平方毫米,长1千米的铜线,导线直流电阻r=12.5Ω),连接好电桥及电阻测试板接上被测电阻后,测试板上的“Rx1”组(中、上)两端钮应短接。

电桥的连接按图8(a),将2、3两接线端钮短接,被测电阻通过“电桥输入端”分别接在1、

3两端钮上。

图9电阻测试板

根据电阻的大小,将功能转换开关转至选定的比率K值位置,按下G、B开关,调节测量盘,使电桥处于平衡状态(电流表为0),并记录测量结果。

再进行“三端”法测量,接线按图10进行,被测电阻的一端接1端钮,2端钮接被测电阻另一端的有效测试点,3端钮可用鳄鱼夹夹在2接线端钮被测电阻的外侧,电桥操作与上相同。

3、记录各转盘读数之和乘以K所得的值即为RX的值,测量精度为0.2%,求出不确定度△R,最后结果分别表示为:

Rx=R±△R(Ω)

图10电桥的三端测法

(二)、用开尔文电桥测量电阻

1、估计被测阻值,按下表选择相应倍率及电压并按四端法接入被测电阻,(见图4)各

量程的测量精度见表2。

2、在R1、R2两组开关的“×1000”盘上分别打“1”,其余盘均为0;

3、在R3测量盘开关打上与被测电阻相应的数值,先后按下G、B按钮,调节R3测量盘

使检流计指零。

(电流表指0)

RxR3倍率

xR2

表2

量程倍率

测量上限

R1=R2

R3位置

分辨率

准确度(%)

电源

10

111.11Ω

1000Ω

1000

0.001Ω

1

1.5V

1

11.111Ω

1000Ω

1000

0.0001Ω

1

0.1

1.1111Ω

1000Ω

1000

0.00001Ω

1

0.01

0.11111Ω

1000Ω

1000

0.000001Ω

2

4、测量时,尽量减少按“B”按钮的时间,更不能长时间锁定,可减少被测电阻因电

流受热产生的误差,提高测试精度。

5、如内附检流计(电流表)灵敏度不够高,需外接高灵敏度检流计时,可用连接好导线的专用插头,插入“G外”插座中,即可测量(此时内接断开)。

(三)、非平衡直流电桥实验内容及方法

RQJ-Ⅲ型非平衡直流电桥之三个桥臂R1、R2、R3分别由10×(1000+100+10+1+0.1)Ω电阻和十进步进开关组合而成,调节范围在11.1110KΩ内,负载电阻Rg′由1个10KΩ的多

圈电位器(粗调)和1个100Ω多圈电位器(细调)串联而成,可在10.1KΩ范围内调节。

数字电压表量程200mV。

数字电流表最大量程:

功率1为20mA,采样电阻Rs=10Ω,用于测量<1KΩ的较小电阻。

功率2为200μA,采样电阻Rs=1KΩ,用于测量>1KΩ电阻。

电压输出时,卧式电桥和等臂电桥允许待测电阻RX变化△R/R达到25%,立式电桥允

许RX变化率向上变化达到100%,向下变化为70%。

功率输出时,允许RX之变化率大于电压输出时RX之变化率。

1、非平衡电桥电压输出形式测电阻可自行选取电桥形式,若采用卧式电桥测量

a、确定各桥臂电阻。

使R=R1=R4=1.0KΩ,R′=R2=R3=2.0KΩ(供参考,可自已另行设计)

b、预调平衡,将待测电阻R4接至Rx,功能转换开关转至电压输出,按下G、B,微调

R3使电压输出U0=0。

c、改变R4,记录△R理论值,并记下相应的电压变化值△Ug。

根据(7)~(9)计算出△R的实验值,其中Us=1.3V。

d、计算出实验值和理论值的相对误差E。

2、非平衡电桥功率输出形式测电阻

采用立式电桥测量(可自行选取电桥形式)

a、确定各桥臂电阻。

使R=R3=R4=1.0KΩ,R′=R1=R2=2.0KΩ(供参考,可自己另行设计),由公式(11)算出的电桥的负载电阻Rg。

b、调Rg′,由于电路中设一采样电阻Rs,Rg包含有采样电阻Rs,即RGRGRS,面板上调节的负载电阻RGRGRS,功能转换开关上的“功率1”为测量小电阻的量程,

其采样电阻为Rs=10Ω,“功率2”位置为测量大电阻的量程,其采样电阻Rs=1KΩ。

预调

RGRS1K。

c、预调平衡,将待测电阻R4接至RX,功能转换开关转至电压输出,按下G、B、微调

R3使电压输出U0=0

d、改变R4,记录△R理论值,并记下相应的电压变化值ΔUg,ΔgI由(16)、(17)算出ΔR的实验值,其中Us=1.3V

e、计算出实验值理论值的相对误差E。

3、测量铜电阻(配用FQJ非平衡电桥加热装置)

(1)、用惠斯登电桥(平衡电桥)测量铜电阻[Cu50的R(t)]根据“铜热电阻Cu50的电阻—温度特性表”电阻变化情况,确定R1/R2,将转换开关置于“单桥”位置,按下G、B

开关,调节R3,使电桥平衡(电流表为0)。

记录温度和电阻值R3,代入(18)式计算对应的R(t)。

(注意:

每隔5℃测量1个点,加热范围室温~65℃。

(2)、非平衡电桥电压输出形式测量铜电阻

a、采用卧式电桥测量

1确定各桥臂电阻值。

设定室温时之铜电阻值为R0(查表)使R=R1=R4=R0,选择R′

=R2=R3=30Ω(供参考,可自行设计)

2预调平衡,将待测电阻接至Rx,R2,R3调至30Ω,R1调至R0,功能转换开关转至电

压输出,G、B按钮按下,微调R1使电压U0=0

3开始升温,每5℃测量1个点,同时读取温度t和输出U0(t)。

b、采用立式电桥测量

1自行设计桥臂电阻R,R′(预习时完成,实验前交老师检查)②预调平衡,步骤与上述相类似。

③升温测量,数据列表。

(同上)

[数据处理]

a、平衡电桥

作R(t)-t图,由图求出电阻温度系数aR,其中R0为0℃时电阻值。

与理论值相

R0T比较,求出百分误差,并写出表达式。

b、非平衡电桥:

卧式

根据(8)式求出各点之ΔR(t)和R(t)值,然后作R(t)-t图用图解法求出0℃时的电阻值R0

和电阻温度系数。

c、非平衡电桥:

立式

根据(9)式求出各点之ΔR(t和)R(t)值,用最小二乘法求0℃时的电阻值R0和α,计算α的标准不确定度。

表5铜电阻Cu50的电阻—温度特性α=0.004280/℃

温度

(0C)

0

1

2

3

4

5

6

7

8

9

电阻值()

-50

39.24

-40

41.40

41.18

40.97

40.75

40.54

40.32

40.10

39.89

39.67

39.46

-30

43.55

43.34

43.12

42.91

42.69

42.48

42.27

42.05

41.83

41.61

-20

45.70

45.49

45.27

45.06

44.84

44.63

44.41

42.20

43.98

43.77

-10

47.85

47.64

47.42

47.21

46.99

46.78

46.56

46.35

46.13

45.92

-0

50.00

49.78

49.57

49.35

49.14

48.92

48.71

48.50

48.28

48.07

0

50.00

50.21

50.43

50.64

50.86

51.07

51.28

51.50

51.81

51.93

10

52.14

52.36

52.57

52.78

53.00

53.21

53.43

53.64

53.86

54.07

20

54.28

54.50

54.71

54.92

55.14

55.35

55.57

55.78

56.00

56.21

30

56.42

56.64

56.85

57.07

57.28

57.49

57.71

57.92

58.14

58.35

40

58.56

58.78

58.99

59.20

59.42

59.63

59.85

60.06

60.27

60.49

50

60.70

60.92

61.13

61.34

61.56

61.77

61.93

62.20

62.41

62.63

60

62.84

60.05

63.27

63.48

63.70

63.91

64.12

64.34

64.55

64.76

70

64.98

65.19

65.41

65.62

65.83

66.05

66.26

66.48

66.69

66.90

80

67.12

67.33

67.54

67.76

67.97

68.19

68.40

68.62

66.83

69.04

90

69.26

69.47

69.68

69.90

70.11

70.33

70.54

70.76

70.97

71.18

100

71.40

71.61

71.83

72.04

72.25

72.47

72.68

72.09

73.11

73.33

110

73.54

73.75

73.97

74.18

74.40

74.61

74.83

75.04

75.26

75.47

120

75.68

(四)、测量热敏电阻本实验采用2.7KΩMF51型半导体热敏电阻进行测量。

该电阻是由一些过渡金属氧化物(主要用Mn、Co、Ni、Fe等氧化物)在一定的烧结条件

下形成的半导体金属氧化物作为基本材料制成,具有P型半导体的特性,对于一般半导体材料,电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略。

但上述过渡金属氧化物则有所不同,在室温范围内基本上已全部电离,即载流子浓度基本上与温度无关,此时主要考虑迁移率与温度的关系。

随着温度升高,迁移率增加,电阻率下降,故这类金属氧化物半导体是一种具有负温度系数的热敏电阻元件,其电阻—温度特性见表6。

根据理论分析,其电阻—温度特性的数学表达式通常可表示为Rt=R25·exp[Bn

(1/T-1/298)]式中,R25,Rt分别为25℃和t℃时热敏电阻的电阻值:

T=273+t;Bn为材料常数,制作时不同的处理方法其值不同。

对于确定的热敏电阻,可以由实验测得的电阻—温度曲线求得。

我们也可以把上式写成比较简单的表达式

RtR0eE/KTR0eBU/T

因此,热敏电阻之阻值Rt与t为指数关系,是一种典型的非线性电阻。

式中

RtR25eBU/298。

K为玻尔兹曼常数。

--65℃。

(1)、根据表2.7KΩMF51之电阻—温度特性研究桥式电路,并设计各桥臂电阻R,R′,

以确保电压输出不会溢出(预习时设计计算好)。

实验时可以先用电阻箱模拟,若不满足要求,立即调整R′阻值。

(2)、预调平衡

①根据桥式,预调R、R′。

室温时之电阻值为R0。

2将功能转换开关旋至电压输出,按下G、B开关,微调R3使数字电压表为0。

(3)、升温,每隔5℃测1个点,将测量数据列表。

2、采用非平衡电桥功率输出测量2.7KΩMF51之R(t),温度范围为室温—65℃。

由于功率桥的范围比电压输出时的测量范围大得多,可以选用等臂电桥或卧式电桥。

(1)选择桥式电路并确定臂电阻R′。

(2)根据(23-11)式计算Rg。

以上两条在预习时先计算好。

(3)预调平衡

①按照计算好的Rg值调节Rg′。

方法可采用下列二种:

一是用数字万用表两表棒插入Rg′两接线柱,再调节Rg′粗细旋钮(此时,电桥上的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1