流体力学英文版课后习题答案.docx

上传人:b****5 文档编号:4367672 上传时间:2022-12-01 格式:DOCX 页数:23 大小:541.84KB
下载 相关 举报
流体力学英文版课后习题答案.docx_第1页
第1页 / 共23页
流体力学英文版课后习题答案.docx_第2页
第2页 / 共23页
流体力学英文版课后习题答案.docx_第3页
第3页 / 共23页
流体力学英文版课后习题答案.docx_第4页
第4页 / 共23页
流体力学英文版课后习题答案.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

流体力学英文版课后习题答案.docx

《流体力学英文版课后习题答案.docx》由会员分享,可在线阅读,更多相关《流体力学英文版课后习题答案.docx(23页珍藏版)》请在冰豆网上搜索。

流体力学英文版课后习题答案.docx

流体力学英文版课后习题答案

1.1Whatwillbethe(a)thegaugepressureand(b)theabsolutepressureofwateratdepth12mbelowthesurface?

ρwater=1000kg/m3,andPatmosphere=101kN/m2.

Solution:

Rearrangingtheequation1.1-4

Setthepressureofatmospheretobezero,thenthegaugepressureatdepth12mbelowthesurfaceis

Absolutepressureofwateratdepth12m

1.3AdifferentialmanometerasshowninFig.issometimesusedtomeasuresmallpressuredifference.Whenthereadingiszero,thelevelsintworeservoirsareequal.AssumethatfluidBismethane(甲烷),thatliquidCinthereservoirsiskerosene(specificgravity=0.815),andthatliquidAintheUtubeiswater.TheinsidediametersofthereservoirsandUtubeare51mmand6.5mm,respectively.Ifthereadingofthemanometeris145mm.,whatisthepressuredifferenceovertheinstrumentInmetersofwater,(a)whenthechangeinthelevelinthereservoirsisneglected,(b)whenthechangeinthelevelsinthereservoirsistakenintoaccount?

Whatisthepercenterrorintheanswertothepart(a)?

Solution:

pa=1000kg/m3pc=815kg/m3pb=0.77kg/m3D/d=8R=0.145m

Whenthepressuredifferencebetweentworeservoirsisincreased,thevolumetricchangesinthereservoirsandUtubes

(1)

so

(2)

andhydrostaticequilibriumgivesfollowingrelationship

(3)

so

(4)

substitutingtheequation

(2)forxintoequation(4)gives

(5)

(a)whenthechangeinthelevelinthereservoirsisneglected,

(b)whenthechangeinthelevelsinthereservoirsistakenintoaccount

error=

1.4TherearetwoU-tubemanometersfixedonthefluidbedreactor,asshowninthefigure.ThereadingsoftwoU-tubemanometersareR1=400mm,R2=50mm,respectively.Theindicatingliquidismercury.Thetopofthemanometerisfilledwiththewatertopreventfromthemercuryvapordiffusingintotheair,andtheheightR3=50mm.TrytocalculatethepressureatpointAandB.

Figureforproblem1.4

 

Solution:

ThereisagaseousmixtureintheU-tubemanometermeter.Thedensitiesoffluidsaredenotedby

respectively.ThepressureatpointAisgivenbyhydrostaticequilibrium

issmallandnegligibleincomparisonwith

andρH2O,equationabovecanbesimplified

=

=1000×9.81×0.05+13600×9.81×0.05

=7161N/m²

=7161+13600×9.81×0.4=60527N/m

 

1.5Waterdischargesfromthereservoirthroughthedrainpipe,whichthethroatdiameterisd.TheratioofDtodequals1.25.TheverticaldistancehbetweenthetankAandaxisofthedrainpipeis2m.WhatheightHfromthecenterlineofthedrainpipetothewaterlevelinreservoirisrequiredfordrawingthewaterfromthetankAtothethroatofthepipe?

Assumethatfluidflowisapotentialflow.Thereservoir,tankAandtheexitofdrainpipeareallopentoair.

 

Solution:

Bernoulliequationiswrittenbetweenstations1-1and2-2,withstation2-2beingreferenceplane:

Wherep1=0,p2=0,andu1=0,simplificationoftheequation

1

Therelationshipbetweenthevelocityatoutletandvelocityuoatthroatcanbederivedbythecontinuityequation:

2

Bernoulliequationiswrittenbetweenthethroatandthestation2-2

3

Combiningequation1,2,and3gives

SolvingforH

H=1.39m

1.6Aliquidwithaconstantdensityρkg/m3isflowingatanunknownvelocityV1m/sthroughahorizontalpipeofcross-sectionalareaA1m2atapressurep1N/m2,andthenitpassestoasectionofthepipeinwhichtheareaisreducedgraduallytoA2m2andthepressureisp2.Assumingnofrictionlosses,calculatethevelocitiesV1andV2ifthepressuredifference(p1-p2)ismeasured.

Solution:

InFig1.6,theflowdiagramisshownwithpressuretapstomeasurep1andp2.Fromthemass-balancecontinuityequation,forconstantρwhereρ1=ρ2=ρ,

FortheitemsintheBernoulliequation,forahorizontalpipe,

z1=z2=0

ThenBernoulliequationbecomes,aftersubstituting

forV2,

Rearranging,

PerformingthesamederivationbutintermsofV2,

1.7AliquidwhosecoefficientofviscosityisµflowsbelowthecriticalvelocityforlaminarflowinacircularpipeofdiameterdandwithmeanvelocityV.Showthatthepressurelossinalengthofpipe

is

.

Oilofviscosity0.05Pasflowsthroughapipeofdiameter0.1mwithaaveragevelocityof0.6m/s.Calculatethelossofpressureinalengthof120m.

Solution:

TheaveragevelocityVforacrosssectionisfoundbysummingupallthevelocitiesoverthecrosssectionanddividingbythecross-sectionalarea

1

Fromvelocityprofileequationforlaminarflow

2

substitutingequation2foruintoequation1andintegrating

3

rearrangingequation3gives

1.8.Inaverticalpipecarryingwater,pressuregaugesareinsertedatpointsAandBwherethepipediametersare0.15mand0.075mrespectively.ThepointBis2.5mbelowAandwhentheflowratedownthepipeis0.02m3/s,thepressureatBis14715N/m2greaterthanthatatA.

AssumingthelossesinthepipebetweenAandBcanbeexpressedas

whereVisthevelocityatA,findthevalueofk.

IfthegaugesatAandBarereplacedbytubesfilledwithwaterandconnectedtoaU-tubecontainingmercuryofrelativedensity13.6,giveasketchshowinghowthelevelsinthetwolimbsoftheU-tubedifferandcalculatethevalueofthisdifferenceinmetres.

Solution:

dA=0.15m;dB=0.075m

zA-zB=l=2.5m

Q=0.02m3/s,

pB-pA=14715N/m2

Whenthefluidflowsdown,writingmechanicalbalanceequation

0.295

makingthestaticequilibrium

1.9.Theliquidverticallyflowsdownthroughthetubefromthestationatothestationb,thenhorizontallythroughthetubefromthestationctothestationd,asshowninfigure.Twosegmentsofthetube,bothabandcd,havethesamelength,thediameterandroughness.

Find:

(1)theexpressionsof

hfab,

andhfcd,respectively.

(2)therelationshipbetweenreadingsR1andR2intheUtube.

Solution:

(1)FromFanningequation

and

so

Fluidflowsfromstationatostationb,mechanicalenergyconservationgives

hence

2

fromstationctostationd

hence

3

Fromstaticequation

pa-pb=R1(ρˊ-ρ)g-lρg4

pc-pd=R2(ρˊ-ρ)g5

Substitutingequation4inequation2,then

therefore

6

Substitutingequation5inequation3,then

7

Thus

R1=R2

1.10Waterpassesthroughapipeofdiameterdi=0.004mwiththeaveragevelocity0.4m/s,asshowninFigure.

1)Whatisthepressuredrop–∆PwhenwaterflowsthroughthepipelengthL=2m,inmH2Ocolumn?

2)Findthemaximumvelocityandpointratwhichitoccurs.

3)Findthepointratwhichtheaveragevelocityequalsthelocalvelocity.

4)ifkeroseneflowsthroughthispipe,howdothevariablesabovechange?

(theviscosityanddensityofWaterare0.001Pasand1000kg/m3,respectively;andtheviscosityanddensityofkeroseneare0.003Pasand800kg/m3,respectively)

solution:

1)

fromHagen-Poiseuilleequation

2)maximumvelocityoccursatthecenterofpipe,fromequation1.4-19

soumax=0.4×2=0.8m

3)whenu=V=0.4m/sEq.1.4-17

4)kerosene:

 

1.12Asshowninthefigure,thewaterlevelinthereservoirkeepsconstant.Asteeldrainpipe(withtheinsidediameterof100mm)isconnectedtothebottomofthereservoir.OnearmoftheU-tubemanometerisconnectedtothedrainpipeattheposition15mawayfromthebottomofthereservoir,andtheotherisopenedtotheair,theUtubeisfilledwithmercuryandtheleft-sidearmoftheUtubeabovethemercuryisfilledwithwater.Thedistancebetweentheupstreamtapandtheoutletofthepipelineis20m.

a)Whenthegatevalveisclosed,R=600mm,h=1500mm;whenthegatevalveisopenedpartly,R=400mm,h=1400mm.Thefrictioncoefficientλis0.025,andthelosscoefficientoftheentranceis0.5.Calculatetheflowrateofwaterwhenthegatevalveisopenedpartly.(inm³/h)

b)Whenthegatevalveiswidelyopen,calculatethestaticpressureatthetap(ingaugepressure,N/m²).le/d≈15whenthegatevalveiswidelyopen,andthefrictioncoefficientλisstill0.025.

Figureforproblem1.12

Solution:

(1)Whenthegatevalveisopenedpartially,thewaterdischargeis

SetupBernoulliequationbetweenthesurfaceofreservoir1—1’andthesectionofpressurepoint2—2’,andtakethecenterofsection2—2’asthereferringplane,then

(a)

Intheequation

(thegaugepressure)

Whenthegatevalveisfullyclosed,theheightofwaterlevelinthereservoircanberelatedtoh(thedistancebetweenthecenterofpipeandthemeniscusofleftarmofUtube).

(b)

whereh=1.5m

R=0.6m

Substitutetheknownvariablesintoequationb

Substitutetheknownvariablesequationa

9.81×6.66=

thevelocityisV=3.13m/s

theflowrateofwateris

2)thepressureofthepointwherepressureismeasuredwhenthegatevalveiswide-open.

Writemechanicalenergybalanceequationbetweenthestations1—1’and3-3´,then

(c)

since

inputtheabovedataintoequationc,

9.81

thevelocityis:

V=3.51m/s

Writemechanicalenergybalanceequationbetweenthestations1—1’and2——2’,forthesamesituationofwaterlevel

(d)

since

inputtheabovedataintoequationd,

9.81×6.66=

thepressureis:

1.14Waterat20℃passesthroughasteelpipewithaninsidediameterof300mmand2mlong.Thereisaattached-pipe(Φ60⨯3.5mm)whichisparallelwiththemainpipe.Thetotallengthincludingtheequivalentlengthofallformlossesoftheattached-pipeis10m.Arotameterisinstalledinthebranchpipe.Whenthereadingoftherotameteris2.72m3/h,trytocalculatetheflowrateinthemainpipeandthetotalflowrate,respectively.Thefrictionalcoefficientofthemainpipeandtheattached-pipeis0.018and0.03,respectively.

Solution:

Thevar

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1