Topic 2 Individual Preferences.docx

上传人:b****5 文档编号:4201319 上传时间:2022-11-28 格式:DOCX 页数:15 大小:91.91KB
下载 相关 举报
Topic 2 Individual Preferences.docx_第1页
第1页 / 共15页
Topic 2 Individual Preferences.docx_第2页
第2页 / 共15页
Topic 2 Individual Preferences.docx_第3页
第3页 / 共15页
Topic 2 Individual Preferences.docx_第4页
第4页 / 共15页
Topic 2 Individual Preferences.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

Topic 2 Individual Preferences.docx

《Topic 2 Individual Preferences.docx》由会员分享,可在线阅读,更多相关《Topic 2 Individual Preferences.docx(15页珍藏版)》请在冰豆网上搜索。

Topic 2 Individual Preferences.docx

Topic2IndividualPreferences

E5650–MicroeconomicTheory

Topic2:

IndividualPreferences

PrimaryReadings:

DL–Chapter4;JR-Chapter3;Varian–Chapter7

Inmosteconomicmodels,westartwithanagent'sutilityfunction.Theutilityfunctionbasicallymapsfrombundlesthattheagentmightchoose,totherealline.Theutilityfunctionisquiteconvenient:

itcanbemaximizedandmanipulatedusingmathematicaltools.Butthequestionis:

Isitvalidtoreduceasimple,real-valuefunction,somethingascomplicatedasanagent'spreferencesoverawidevarietyofbundles?

Whatdoesitreallymeanabouttheagent'spreferences?

Areweimposingsomehiddenordesirableassumptionswhenwetakethisapproach?

Inthislecture,wewilltrytoanswerthesequestionsbyanalyzingtherelationshipsbetweenaxiomsaboutanagent'spreferences,andthenestablishingtheexistenceofautilityfunctionthatrepresentstheagent'spreferences.

 

2.1TheConsumer'sPreferences

2.1.1ConsumptionSet

Welettheconsumptionset,X,representthesetofallalternatives,orcompleteconsumptionplans,thattheconsumercanconceive-whethersomeofthemwillbeachievableinpracticeornot.EveryelementofXiscalledaconsumptionbundleoraconsumptionplan.

∙Xcapturestheuniverseofallpossiblechoicesaconsumermayhave.Forthisreason,theconsumptionsetisalsoknownasthechoiceset.

∙Normally,XRm+-theentirenonnegativeorthantoftherealspaceRm.

∙WewillalwaysassumethatXisaclosedandconvexset.

2.1.2BasicProperties&AxiomsofPreferences

∙Forx,yX,whenwewritex

y,wemeanthat"theconsumerthinksthatthebundlexisatleastasgoodasbundley."Wecall

apreferencerelationonX.

∙Wesay,"xis(weakly)preferredtoy".

∙Itisclearthat

isabinaryrelationdefinedonX.

Asthefinalpurposeofintroducingapreferencerelationistoorderthesetofconsumptionbundles,weneedtoassumeanumberofaxioms.Theseaxiomsofconsumerchoiceareintendedtogiveformalmathematicalexpressiontofundamentalaspectsofconsumerbehaviorandaltitudestowardtheobjectsofchoice.

AXIOM1:

(Completeness)x,yX,(x

y)(y

x).(Note:

="or")

∙Tosatisfythecompletenessaxiom,thepreference

cannotbedefinedsothatx

yxjyj,j.(Reason:

itisonlyapartialordering.)

(Note:

Whilethisaxiomappearsinnocuous,incombinationwiththeusualconfinementoftheconsumptionsettotheconsumptionoftheindividualonly,itrulesoutexternalitiesinconsumption.)

AXIOM2:

(Reflexivity)xX,x

x.

AXIOM3:

(Transitivity)(x

y)&(y

z)x

z.(Note:

&="and")

Note:

∙Thefirstassumptionsaysthatanytwobundlescanbecompared,thesecondistrivial,andthethirdisnecessaryforanydiscussionsofpreferencemaximization:

forifpreferenceswerenottransitive,theremightbesetsofbundleswhichhadnobestelements.

Itisusefultoextendournotation:

∙Wewritexyandsaythatxisstrictlypreferredtoy.Wesometimealsowritenoty

x,meaningyisnotpreferredtox,whichisthesameasxy,givencompleteness.

∙Wewritex~yif(x

y)&(x

y)andsaythatxisindifferenttoy.

 

Examples:

(a)FiniteSet

∙IfXisafiniteset,thenapreferencerelationonXwillpartitionXintoafinitenumberofsubsetssuchthat

∙elementswithinasubsetareallindifferent;

∙Therewillbeastrictpreferenceforelementsfromdifferentsubsets.

(b)SummationOrdering:

∙LetX=Rm.

∙Definex

ytomeanthat

∙Itiseasytoshowthatthissummationorderingiscomplete,reflectiveandtransitive.

(c)LexicographicOrdering

∙LetX=Rm+.

∙x

yifandonlyif

∙either,thereexistssomejsuchthatxi=yiforiyj;

∙or,xi=yifor1im.

∙Essentially,thelexicographicorderingcomparesthecomponentsoneatatimebeginningwiththefirst,anddeterminestheorderingbasedonethefirstadifferenceisfound.

∙Thisimpliesthatthevectorwithgreatestcomponentisrakedthehighest.

Theabovethreeaxiomsarethebasicpropertiesofapreferencerelation.Anyrelationsatisfyingthese3axiomsiscalledanordering.Inordertohaveafunctionalrepresentation,wemayneedafewmoreaxioms(assumptions).(IfXiscountable,noadditionalaxiomisneeded.)

 

AXIOM4:

(Continuity)ForallyinX,thesets{x:

x

y}and{x:

y

x}areclosedsets.Itfollowsthatthesets{x:

xy}and{x:

yx}areopensets.

∙Thisassumptionisnecessarytoruleoutcertaindiscontinuousbehavior.

∙Itsaysthat,if(xi)isasequenceofconsumptionbundlesthatareallatleastasgoodasyandifthissequenceconvergestosomebundlex*,thenx*isatleastasgoodasy.

∙Thekeyconsequenceofcontinuityisasfollows:

ifyisstrictlypreferredtozandifxisbundlethatiscloseenoughtoy,thenxmustbestrictlypreferredtoz.

Examples

∙Summationorderingiscontinuous.

∙Lexicographicorderisdiscontinuous(seethefollowingdiagramonR2+)

x2

 

{(x1,x2)(1,1)}

1

 

1x1

AXIOM4A:

(StrongMonotonicity)Ifxyandxy,thenxy.

AXIOM4B:

(WeakMonotonicity)Ifxiyiforalli,thenx

y.

∙Weakmonotonicitysaysthat"atleastasmuchofeverythingisatleastasgood."Iftheconsumercancostlesslydisposeofunwantedgoods,thisassumptionistrivial.

∙Strongmonotonicitysaysthatatleastasmuchofeverygood,andstrictlymoreofsomegood,isstrictlybetter.Thisissimplysaysassumingthatgoodsaregood.

∙Ifoneofthegoodsisa"bad",suchasgarbageorpollution,thenstrongmonotonicitywillnotbesatisfied.Butwecaneasilygetaroundthisproblembyrespecifyingthegoodtobeabsenceofgarbage,orabsenceofpollution,whichwillnormallyleadtostrongmonotonicity.

AXIOM5:

(Local?

Nonsatiation)GivenanyxinXand>0,thenthereissomebundleyinXwith||x-y||

(Analternativedefinition:

requiringthistoholdoversomesetthatcontainthesetdefinedbytherelevantbudgetconstraint.)

∙Localnonsatiationsaysthatonecanalwaysdoalittlebitbetter,evenifoneisrestrictedtoonlysmallchangeintheconsumptionbundle.

∙Itcanbeshownthatstrongmonotonicityimplieslocalnonsatiationbutnotviceversa.

∙Keyconsequenceoflocalnonsatiationrulesout"thick"indifferencecurves.

Thefollowingtwoassumptionsareoftenusedtoguaranteenicebehaviorofconsumerdemandfunctions.

AXIOM6A:

(Convexity)Givenx,y,zXsuchthatx

zandy

z,thentx+(1-t)y

zforall0t1.

AXIOM6B:

(StrictConvexity)Givenxy,zXsuchthatx

zandy

z,thentx+(1-t)yzforall0

∙Convexityimpliesthatanagentprefersaveragetoextremes.

∙Convexityisageneralizationoftheneoclassicalassumptionof"diminishingmarginalratesofsubstitution."

Beforewemoveonthefunctionalrepresentationofthepreferencerelation,wemustemphasizethattheapreferencerelationisanordinal,ratherthancardinal,concepteventhoughwehaveattemptedtoincorporateadditionalstructuresbyimposingsomeoftheaboveassumptions.

 

2.2UtilityFunctions

Autilityfunctionisareal-valuedfunctionudefinedontheconsumptionsetXsuchthatpreferencerankingsarepreservedbythemagnitudeofu.Thatis,autilityfunctionuhasthepropertythatgivenanytwoelementsx,yinX,u(x)u(y)ifandonlyifx

y.

Butnotallpreferencerelationscanberepresentedbyutilityfunctions.Arathergeneralresultisthatanycontinuouspreferenceorderingcanberepresentedbyacontinuousutilityfunction.Thisisaverydifficultresulttoprove(Debreu(1959)).(Moreover,whileanycontinuousorderingisalwaysrepresentable,continuityisnotnecessary.Thenecessaryandsufficientconditionsforrepresentationisrathertechnical;seeNg1979/83,App.1B.)Wewillfocusonasomewhatsimplerresult-theonethatcanbeprovedconstructively.Themainideasare:

∙Weselectarbitraryfixedlinethatcutsalloftheindifferencecurves(orsurfaces).

∙Onceutilityisdefinedalongthisline,theutilityofanyotherpointisfoundbytracingtheappropriateindifferencecurvetothelineandusingtheutilityvaluethere.

∙Theassumptionofstrongmonotonicityguaranteesthattheindifferencecurvesexitandthatanylineoftheforme,>0ande>0,cutsthemall.

ExistenceofUtilityFunctions

∙SupposethatareferencerelationonX=Rm+iscomplete,reflexive,transitive,continuous,andstronglymonotone.Thenthereexistsacontinuousutilityfunctionu:

Rm+Rwhichrepresentsthepreferencerelation.

x2

e

 

x1

Proof

LetebethevectorinRm+consistingofallones.Thengivenanyvectorx,let

u(x)=suchthatx~e.

Wenowneedtoshowthatu(x)iswell-defined,i.e.,itexistsandunique.

Definethefollowingtwosets:

A={:

0,e

x}

B={:

0,x

e}

Thenbystrongmonotonicity,Aisnonempty.Biscertainlynonemptysince0B.BothAandBareclosedbythecontinuityassumption.Ontheotherhand,bythecompletenessassumption,weknowthatevery(0)mustbelongtoAB,thatis,AB=R+.

Notethatif*AB,then*e~xsothatwecanletu(x)=*.Therefore,weneedtoprovethatABisnonempty.

Bymonotonicity,itfollowsthatAimpliesthat'Aforall'.SinceAisclosedsubsetofR+,itmustbeinaformofclosedinterval[*,+),whichimpliesthatB=[0,*]sinceBisanonemptyclosedsetsuchthatAB=R+.

Wenowhavetoprovethatthevalue*mustbeunique.Let1e~xand2e~x.Thenitisclearthat1e~1e(transitivitypropertyof"~").Bystrongmonotonicity,itmustbethecasethat1=2.

Letusprovethattheabove-definedutilityfunctionactually

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1