现代缸内直喷式汽油机.docx

上传人:b****5 文档编号:4106888 上传时间:2022-11-27 格式:DOCX 页数:38 大小:1.73MB
下载 相关 举报
现代缸内直喷式汽油机.docx_第1页
第1页 / 共38页
现代缸内直喷式汽油机.docx_第2页
第2页 / 共38页
现代缸内直喷式汽油机.docx_第3页
第3页 / 共38页
现代缸内直喷式汽油机.docx_第4页
第4页 / 共38页
现代缸内直喷式汽油机.docx_第5页
第5页 / 共38页
点击查看更多>>
下载资源
资源描述

现代缸内直喷式汽油机.docx

《现代缸内直喷式汽油机.docx》由会员分享,可在线阅读,更多相关《现代缸内直喷式汽油机.docx(38页珍藏版)》请在冰豆网上搜索。

现代缸内直喷式汽油机.docx

现代缸内直喷式汽油机

  

现代缸内直喷式汽油机

  第一篇概论

  1 缸内直接喷射是现代汽油机的发展方向

  汽油机的发展经历了100多年的漫长历史,其中具有里程碑意义的发展阶段无不是以油气混合方式和机理的变迁为标志的。

  早期的化油器式汽油机依靠化油器喉口气流流速增加所产生的真空度将汽油吸出被高速进气空气流雾化以及汽油油滴本身的蒸发而与空气形成可燃混合汽。

油气混合比(空燃比=进气空气质量,燃油质量)取决于化油器喉口的设计和量孔直径,负荷的调节是由节气门的开度来调节进入汽缸的油气混合汽量来实现的,因此属于混合汽外部形成的量调节方式,且没有任何反馈控制。

由于汽油一空气混合汽能在相当宽的空燃比范围内点燃,这种不太精确的控制对早期汽油机的正常运行并不存在什么问题。

  

  但是。

随着世界工业化的发展,汽车成为不可或缺的主要交通工具,而作为汽车主要动力的这种化油器式汽油机废气中的有害成分(CO、HC和NOx等)对大气造成了污染,而燃烧产物CO2又产生“温室效应”导致全球气候变暖。

随着汽车数量的与日俱增,对人类生存环境的危害日趋加剧。

因此汽车的节能减排已成为全球刻不容缓需要解决的重要问题。

  从20世纪70年代末80年代初开始,化油器逐渐被电控喷油系统所替代,其主要原因就是使用三元催化转化器对废气进行净化的需要。

为了同时降低汽油机废气中CO、HC和NOx三种有害气体的排放,空燃比必须精确地控制在化学计量比(14.7:

1)上。

而电控喷油系统可利用氧传感器对空燃比进行精确的反馈控制。

提高三元催化转化器的废气净化效率。

  汽车废气排放标准对有害物排放限值的加严也促使电控喷油技术的不断改进。

电控喷油系统早期的设计是在进气总管中的节气门处用一个喷油器进行单点喷射,到各个汽缸之间有相当的距离,大量的汽油附着在这段进气管的壁面上,不能均匀及时地进入汽缸与空气混合。

为了提高各汽缸之间供油的均匀程度,并改善在变工况时对空燃比的控制,单点喷射逐渐被每缸一个喷油器在进气门口附近的进气道中的多点喷射所替代。

早期的多点喷射采用各个喷油器“同时喷射”或两缸一组的“分组喷射”方案,喷油时一些汽缸的进气门处于开启状态,而另一些汽缸的进气门则处于关闭状态。

为了使得各个汽缸间的油气混合过程相同,以减少一些汽缸的HC排放,“同时喷射”和“分组喷射”又被更完善的按点火顺序各缸进行“顺序喷射”所替代。

  但是,现代汽油机的这种“进气道喷射喷射”系统仍没有从根本上完全摆脱传统的混合汽外部形成方式,并依然存在冷启动时和暖机期间HC排放高的问题。

这种进气道喷射汽油机在0.3~0.5MPa的压力下将汽油以较大的油滴(直径=150~300um)喷向进气门的背部和进气口附近的壁面上,只有少量的汽油能够在油滴到达壁面形成油膜之前直接在空气中蒸发。

汽油的蒸发和与空气的混合主要依靠进气门和进气道壁面的高温以及进气门打开时灼热的废气倒流和冲击。

这种混合汽形成方式在发动机稳定工况下尚可满足要求,但在变工况(如车辆加速时)和发动机冷启动时汽油的蒸发和油气混合严重不足。

不得不过量喷油,然而这将造成大量未燃HC经排气门进入三元催化转化器。

特别是在冷启动时,三元催化转化器正处于低温状态而尚未达到起燃温度,这样就会造成很高的有害物排放,成为车辆达到废气排放标准限值的主要障碍之一。

尤其是从国3排放标准开始,取消了最初的40s暖机阶段,而是从冷机一启动就开始进行排放测试,那么冷启动的排放问题将变得更为突出。

据,有关统计资料表明,在与我国汽车排放标准测试循环相似的新欧洲行驶循环(NEFZ)以及美国城市标准测试循环(FTP-75)中,冷启动排放量占总排放量的份额最多可高达90%,可见发动机冷启动排放的影响之大。

  汽油缸内直接喷射从油气混合机理上可以解决上述变工况(如车辆加速时)和冷启动时油气混合不足的问题。

早期的缸内直喷式汽油机因喷射技术水平的限制,喷雾油滴的直径约为80um。

计算表明,一滴这样大小的油滴在200℃空气中需要大约55ms才能完全蒸发。

如果发动机的转速为1500r/min的话,这段时间相当于495°CA(曲轴转角)。

显然,蒸发时间过长。

在这种情况下油气混合不能主要依靠喷雾来实现。

随着汽油喷射技术的进步,现代缸内直喷式汽油机应用的汽油泵的供油压力已达到5~12MPa。

又采用带旋流的喷油嘴,雾化性能得以提高,喷雾的油滴直径约为20um,喷雾锥角可达50~100°,常压下的贯穿度约为100mm。

此时一滴20um的油滴在上述同样情况下仅需3.4ms或31°CA就能完全蒸发,因而汽油的蒸发和与空气的混合可主要依靠喷雾来实现,再加上缸内空气运动的辅助,变工况(如车辆加速时)和冷启动时不再需要过量喷油,冷启动喷油量得以大大减少(图1),有害物排放也将大为降低。

同时,由于汽油直接喷入汽缸内,消除了进气道喷射时形成壁面油膜的弊病。

特别是在发动机尚未暖机的状态下,因而能改善变工况时对空燃比的控制,不但能改善车辆的加速响应性,而且还能降低此时的有害物排放。

  此外,缸内直接喷射还可带来很多其它好处,从而有利于降低燃油耗,达到节能和减少温室气体C02排放的目标。

例如:

汽油在缸内直接喷射时油滴主要依靠从缸内空气中吸热而非从壁面吸热,因而能使混合汽的温度降低和体积减小,从而有利于提高充气效率,降低爆震倾向和提高压缩比。

计算表明,在汽油油滴蒸发完全依靠从空气中吸热或者完全依靠从壁面吸热这两种极端情况下,缸内混合汽的体积在空燃比为12.5时将相差大约7%,而混合汽的温度在上止点前将相差大约50℃。

因此,与进气道喷射汽油机相比,缸内直喷式汽油机的充气效率提高了10%,同时爆震倾向也大为降低,表现在受爆震限制的点火时刻可提前若干曲轴转角,因而压缩比可提高1.5~2,有利于提高汽油机的热效率,降低燃油耗(约2%)。

特别是有利于汽油机采用增压,并应用较高的压缩比,克服了由于增压汽油机压缩比较小而对部分负荷燃油耗所带来的不利影响,同时提高了增压汽油机在2500r/min以下低转速范围内的增压压力,1200r/min时的扭矩能够提高25%,大大改善汽油机的低速扭矩特性和车辆的行驶性能。

此外,由于汽油直接喷入汽缸内。

可实现稀薄混合汽分层燃烧,使得低负荷工况时的空燃比可提高到40以上,从而无需关小节气门来限制进气量,采用像柴油机那样的质调节方式。

基本上避免了发动机在换气过程中的泵气损失,有利于降低燃油耗。

同时,在高空燃比情况下,由于混合汽物性的改变、绝热指数的增加以及混合汽分层致使热损失减少,使得发动机的热效率进一步是高。

由于汽车发动机经常在低负荷工况下运行,因此分层混合汽燃烧的直喷式汽由机可使平均燃油耗降低15~20%。

在欧洲机动车排放组合循环(MVEG)行驶试验中。

其燃油耗明显低于进气道喷射汽油机已达到了相当于非直喷式柴油机的燃油耗水平(图2)。

  图3示出了现代汽油机各种技术改进措施的节油潜力。

可以清楚地看出。

作为单一措施汽油缸内直接喷射蕴藏着最大的节油(即降低CO2排放量)的潜力。

这种效果一方面是由于发动机的无节流运行降低了换气损失。

另一方面由于充量分层运行,燃烧在燃烧室中央进行,周围有隔热的空气层而减少了壁面热损失。

同时全负荷时的爆震倾向降低,因而发动机能够以较高的压缩比运行。

这些措施在发动机整个特性曲线场范围内对燃油耗都起到了有利的作用。

而燃烧室内的充量运动也使得在以化学计量比混合汽运转的范围内具有较高的EGR兼容性,因而在该运转范围内也能够获得节油效果。

  综上所述,无论是从节能和减排的角度,还是从提高汽油机动力性能的角度来看,现代缸内直喷式汽油机在进气道喷射技术的基础上,又将汽油机技术向前推进了一大步,从而成为世界汽油机发展历史上又一个重要的里程碑,不言而喻同样是我国汽车汽油机的重要的发展方向。

(未完待续)

 

2 缸内直喷式汽油机的发展历史

  在内燃机出现的早期,即20世纪初,人们就已对汽油喷射方式进行过研究。

1900年德国Deutz公司就曾经生产过汽油喷射的固定式发动机。

以后,汽油喷射的应用范围逐步转移到活塞式航空发动机上。

二战前夕的20世纪30年代,德国已开始用Benz和BMW公司的汽油喷射发动机装备军用飞机。

  航空发动机采用汽油喷射技术所取得的成果,自然也引起了人们将其应用到汽车上的兴趣。

但是,当时并没有对化油器式汽油机的燃烧方法做重大改动。

通常是为了提高汽车发动机的功率,往往仅在现有的汽缸盖结构基础上,为配备直接喷射喷油器而进行相应的修改,因此开发的重点侧重于喷油装置及其调节。

1938年德国空军研究所(DVL)和Bosch公司合作,首先致力于汽车二冲程缸内直喷式汽油机的研究,并完成了装车试验。

DaimlerBenz公司也于1939年推出了专供赛车使用的四冲程缸内直喷式汽油机。

直到1952年汽油直接喷射才首次批量应用于汽车,Gutbrod公司首先使用Bosch公司提供的机械控制式汽油喷射系统批量生产装有二冲程缸内直喷式汽油机的轿车,因二冲程汽油机采用缸内直接喷射之后可避免扫气过程中的燃油损失,与当时的化油器汽油机相比,其燃油耗节约了25%~40%。

1954年Benz公司首次推出了排量为3.1L的四冲程直立6缸M198缸内直喷式汽油机(图5和图6中),搭载于300SL型轿车。

  

  虽然1934年德国就开始研究如何通过把燃油直接喷入燃烧室而得到不均匀的混合汽,即分层充量。

在20世纪50-60年代,美国Texaco公司也推出了TCP(TexacoCombustionProcess)燃烧系统以及1968年Ford公司推出的PROCO(Ford-ProgrammedCombustionProcess)燃烧系统(图6右),立足于节能减排,力求通过分层稀薄燃烧方式来提高压缩比,使汽油机在保持本身优点的前提下,在燃油经济性方面达到或接近柴油机的水平。

但是,由于缸内直喷式汽油机既有喷油系统又有点火系统,结构较为复杂,成本也较高,同时在燃烧室内实现分层燃烧的调试比较困难,开发费用大,再加上当时尚缺乏供稀薄燃烧用的NOx后处理技术,因此一直到20世纪80年代末,汽油机缸内直喷分层稀燃技术仍未进入实用阶段。

  随着内燃机技术的进步,特别是基于微电子技术的计算机技术的迅速发展,为汽油机缸内直接喷射技术的重新发展提供了前提条件。

同时迫于节能和环保要求日益严格的压力,也对汽油机缸内直接喷射寄予新的期望而再次提上议事日程。

因而20世纪90年代各国纷纷加强了对汽油机缸内直喷技术的研究,至1996~1997年日本三菱和丰田公司率先相继将其开发的缸内分层稀燃直喷式汽油机投入批量生产。

特别是最近10来年,欧洲在Bosch等燃油喷射系统专业生产厂商的汽油缸内直接喷射系统日趋成熟和完善的基础上,各大汽车公司,诸如大众和BMW等,不断推出了动力性能优异、节油效果明显并达到欧4/欧5排放标准的新款缸内直喷式汽油机轿车,标志着汽油缸内直喷技术,无论是在喷油系统、缸内空气运动和燃烧过程的组织及其调试方面,还是在电子控制系统和废气后处理系统方面都已相当成熟。

开始进入蓬勃发展的崭新阶段。

  

  与此同时,大众公司已在我国大连设厂开始批量生产缸内直喷式汽油机,供应一汽大众和上海大众轿车,与欧洲同步推出新车型供应国内市场。

因此,对于我国汽车维修行业来讲,这种技术含量颇高的节能减排的新车型,既为拓展维修市场空间提供了新的机遇,也对知识的更新和提高维修技术提出了新的挑战。

  第二篇 基本原理和结构特点

  1 缸内直喷式汽油机的工作原理

  1.1 混合汽的形成与调节方面的基本要求及特点

  人们在发展现代汽油机缸内直喷技术时,力图综合传统汽油机和柴油机两方面的优点。

众所周知。

柴油机按狄塞尔(Diesel)循环工作,即采用压燃和混合汽质调节方式工作。

其燃油经济性明显优于汽油机。

而汽油机则采用奥托(Otto)循环工作,混合汽进行量调节,过量空气系数(实际空气量/燃油按化学计量比燃烧所需空气量=空燃比/14.7)小,实现均质预混合燃烧,其动力性能指标,即升功率要高于柴油机。

而在柴油机中进行的是非均质混合汽扩散燃烧,尽管总体上过量空气系数λ>1,但混合汽中仍存在局部缺氧的情况,以至于形成了柴油机特有的碳烟与颗粒排放,这在缸内直喷式汽油机中,特别是在分层混合汽燃烧过程中的浓混合汽区域要尽量避免出现类似的情况。

  

  为了扬长避短,综合汽油机和柴油机两方面的优点,要求在现代缸内直喷式汽油机中,如图7所示。

在部分负荷时燃油于压缩行程后期喷入,实现混合汽分层稀薄燃烧(过量空气系数λ≥1.9~2.2),并采用混合汽调节,以避免节气门的节流损失,力求达到与柴油机相当的燃油经济性;而在中等直至高负荷时,燃油在进气行程中喷入,根据运行工况的需要,实现均质稀薄混合汽燃烧(λ=1.3~1.4)或均质燃烧(λ=1.0)或均质加浓混合汽燃烧(λ<1.0),以保持汽油机升功率高的优点。

同时,由于喷入缸内的燃油蒸发时吸收热量所起的冷却作用,提高了抗爆性能,可以实现较高的压缩比(ω=12~14),从而有助于提高循环的热效率,降低燃油耗。

  由于这种现代缸内直喷式汽油机必须在部分负荷时形成分层混合汽,而在高负荷和全负荷时形成均质混合汽,并在这两种运行方式之间进行瞬态转换,而且必须做到响应快、转换平顺,且使司机无明显的感觉。

因此对喷油系统、混合汽形成与燃烧过程的稳定性以及发动机电子控制系统提出了很高的要求,而且还必须专门配用吸附式降NOx催化器以及低硫汽油。

为此,现代缸内直喷式汽油机基于性价比和使用条件的考虑,有的机型已开始采用在所有运行工况下全部以均质混合汽燃烧运行,这样一来发动机的电控系统就要简单得多。

也无需应用吸附式降NOx催化器以及低硫汽油,电控单元和三元催化器基本上可与进气道喷射机型通用,从而成本要明显优于以分层混合汽燃烧运行的机型。

只是其燃油耗略为逊色,但仍要比进气道喷射汽油机低5~9%。

然而,如果这种均质混合汽运行的直喷式汽油机采用高废气再循环。

也可实现稀薄燃烧,那么其与分层混合汽燃烧在燃油耗上的差别将会进一步减小。

1999年,Fiat-GM-Opel动力总成公司在2.2-Ecotec进气道喷射汽油机的基础上推出的该公司第一台2.2-DirectEcotec直喷式汽油机,就是在经过综合经济效益评估后,决定放弃分层混合汽燃烧而仍沿用均质混合汽燃烧,与进气道喷射机型相比较,其标定功率提高6%,最大扭矩提高8%,低速扭矩提高6%~10%,燃油耗降低6%,并达到欧4排放标准(将在本文后续中的国内外典型机型章节中予以专门介绍)。

大众公司在我国大连生产的直喷式汽油机,也就是因我国市场目前暂时无法供应低硫汽油以及缺乏维修经验的实际情况而将原来的分层混合汽燃烧过程改为均质混合汽燃烧过程。

2006年,BMW公司开发的335i-3.0L轿车上搭载的直喷式汽油机也采用均质混合汽运行,从而在喷油量跨度较大的涡轮增压机型上能够采用每循环多次喷射的策略。

在小负荷工况时只需进气行程期间的单次喷油就足以获得均匀的油气混合汽,而在低速高负荷运转工况时,在进气行程期间将喷油量分成2次或3次喷射,这样就能够在尽可能少湿壁的情况下获得非常均匀的油气混合汽,图8示出了其在发动机特性曲线场范围内多次喷射的应用情况,其燃油耗也要比相应的进气道喷射机型低10%,而且废气排放也能得到明显的改善。

特别是在冷启动后采用2次喷油策略,第一次在进气行程喷油,第二次在压缩行程喷油,此时只要不损坏发动机的运转平稳性,点火时刻可以明显延迟到点火上止点后。

从而使废气温度提高200℃以上,大大加快催化转化器的加热,使NOx和HC排放明显降低,可比采用单次喷油时低大约30%(图9)。

  此外,应当指出,分层混合汽运行并不是减少换气过程泵气损失的唯一途径,可变气门正时也可以减少这种损失。

如果均质混合汽燃烧的直喷式汽油机与可变气门正时装置(VVT)结合起来。

其燃油耗可与分层混合汽燃烧系统相当。

  1.2 燃烧系统的基本要求和特点

  如何有效而稳定可靠地实现部分负荷时缸内混合汽的分层与稀薄燃烧是缸内直喷式汽油机成功的关键技术。

  按照混合汽分层的机理,现代缸内直喷式汽油机的分层燃烧系统大体上可分为喷射油束引导、壁面引导和空气气流引导三种,图10示出了这些燃烧系统的结构型式。

它们在混合汽的形成及其向火花塞的输送以及充量运动的产生等方面的设计思想存在着很大的不同,而喷油器和火花塞的空间布置不仅影响气缸盖的结构,而且也影响形成可供点燃的混合汽的时间和区域,因而对燃烧过程产生重大的影响。

  

(1)喷射油束引导

  喷射油束引导的燃烧过程(图10左)由于喷油器和火花塞布置得非常紧凑,直接位于喷射油束的边缘,混合汽向火花塞的输送实际上仅依靠喷射油束的能量,在不同的发动机负荷即不同的喷油量时,获取形成混合汽所需的空气是通过调节喷射油束的物理参数——贯穿深度来实现的,而充量运动和燃烧室的几何形状的影响较小。

同时,由于火花塞与喷油器之间的间距较小,其燃烧过程可用于混合汽形成的时间非常短,使得只有非常少的混合汽能够可靠地点燃,因而其分层燃烧的能力极为有限,而且混合汽的点燃是在一个过量空气系数具有很大梯度的范围内实现的,因而对于局部过量空气系数的波动(例如因喷射油束的差异)反应极其敏感。

其燃烧过程强烈地依赖于喷射油束的形状及其特性的误差。

另一方面,喷射油束对火花塞的直接撞击,不仅会导致采用普通电极材料的火花塞寿命缩短,而且还出现了难以解决的火花塞易于积胶等方面的问题。

此外,这种喷射油束引导的燃烧系统由于喷油器必须紧靠火花塞,至少在四气门汽油机的情况下,还带来一个附加的缺点,即会明显地减小气门尺寸。

  

(2)壁面引导

  对于壁面引导的燃烧过程(图10中),喷油器与火花塞彼此之间的间距较大,此时燃烧室壁面(由燃烧室凹坑的几何形状来调整)将喷射的燃油导向火花塞,同时进气道和燃烧室凹坑几何形状所产生的充量运动(滚流或涡流)起到了辅助作用。

在这种燃烧过程中,在着火之前有较长的混合汽准备时间,因此能够在较大的区域内形成可点燃的空燃混合汽,从而使得这种壁面引导的燃烧过程对喷油的误差并不敏感。

  (3)空气气流引导

  空气引导的燃烧过程(图10右)主要是依靠充量运动(滚流或涡流)将燃油中已准备好的气态部分从喷射油束输往火花塞,并且还必须确保在喷射油束和充量运动的共同作用下,在发动机负荷/转速特性场的宽广范围内,获得足够多的充量分层和混合汽均质化。

  虽然根据混合汽形成的机理按上述方式来分类,但是实际上存在着各种方式相互交叉的情况,其中各种因素并存且相辅相成,需应用这些机理的组合效应来达到充量分层的效果,并确保其稳定可靠地运行。

例如壁面引导和空气气流引导两种机理往往是无法分离而独立存在的,只仅是以一种机理为主而另一种机理为辅,起到相互支持的效果。

特别是进气道和燃烧室凹坑几何形状所产生的充量运动(滚流或涡流),不仅能在充量分层时起到主导作用,而且强烈的充量运动在晚些时候蜕变成较小幅度的涡流,它们有助于混合汽的均质化以及随后燃烧过程中的物质交换,促进充量的完全燃烧。

  以大众Lupo轿车1.4L-FSl分层稀燃直喷式汽油机为例,图11示出了其燃烧系统的原理图。

活塞顶面有两个特殊造型的导向坑,确保在分层稀燃(FSI)燃烧过程中获得所期望的燃油壁面导向和空气气流导向的组合效应。

图12是用计算流体动力学(CFD)方法得到的气流和燃油喷射的计算结果,清晰地显示了这种组合效果。

借助于气流导向坑的形状特别是以其流出角所形成的气流,使燃油喷束在撞到燃油导向坑背风面之前首先受到制动。

由于进气空气滚流和喷油的这种相互作用,使喷出燃油中的一小部分在上止点前55°CA就已形成了很好的混合汽。

处在燃油导向坑背风面的燃油到达坑的底部,并从那里转向火花塞方向(上止点前49°CA)。

这部分燃油从燃油导向坑离开以后,被气流导向坑上方一直存在的空气滚流挤向火花塞,使得到点火时刻在火花塞下方已准备好了良好的空燃混合汽,以确保稳定可靠地点燃(上止点前30°CA)。

此外,由于滚流的强度随转速而增强,因此诸如喷油压力和喷油定时等喷射参数必须作相应的调整来适应工况的变化,以保持空气气流、喷射油束和燃烧室几何形状三者之间良好的配合。

因此,无论是为了获得FSI燃烧过程优异的燃油耗和排放(主要是空气气流导向的作用),还是为了满足批量生产所要求的对燃烧系统制造公差和随运转时间变化的不敏感性(主要是壁面导向的作用),空气气流导向和壁面导向的综合效果都是重要的保证。

  总而言之,开发现代缸内直喷式汽油机燃烧过程,无论是以分层混合汽还是均质混合汽运行,其重点是必须在不同的发动机负荷(喷油持续时间)和转速(活塞速度)情况下。

如何来协调喷射油束、活塞顶燃烧室凹坑几何形状和充量运动三者之间的关系。

确保在火花塞附近及时、可靠和稳定地形成足够数量和良好品质的可供点燃的混合汽。

 

  1.3 燃油喷射方面的基本要求和特点

  汽油机的缸内直接喷射方式对燃油喷射系统的要求肯定要明显高于进气道喷射方式,因为前者不仅要实现高负荷时在进气行程期间的喷射,而且还要满足部分负荷时在压缩行程后期即活塞接近上止点时的喷射要求,因此其喷油压力要明显高于进气道喷射方式,需达到5~12MPa。

高压燃油泵和喷油器是现代缸内直喷式汽油机的重要部件,特别是喷油器的喷雾品质是保证良好混合汽形成,以实现分层与稀燃的关键之一,这将在下文有关喷油系统的章节中专门予以详述。

  按喷射的介质不同,缸内直喷式汽油机的燃油喷射系统可分为高压燃油直接喷射系统和低压混合汽直接喷射系统两大类。

  1.3.1 高压燃油直接喷射系统

  如图13左中所示,高压燃油直接喷射系统可分为以下两种。

  

(1)柴油机式喷油系统:

这是早期Ford公司PROCO缸内直喷式汽油机所采用的类似柴油机的泵一管一嘴式燃油喷射系统,由于当时使用的仍是普通机械式的喷油器,为了便于实现喷油的电子控制,燃油泵压出的燃油不像柴油机那样直接打开喷油嘴针阀喷入汽缸,而是通过电磁阀开启的通道返回燃油箱,只有在电控单元关闭电磁阀后才使燃油产生高压(12~35MPa),将喷油嘴打开而喷入汽缸。

  

  

(2)共轨式喷油系统:

这是目前缸内直喷式汽油机应用最为广泛的一种喷油系统,其工作原理与当今柴油机使用的高压共轨喷油系统相同。

只是燃油共轨压力要低得多,约为5~12MPa。

这种共轨式喷油系统将燃油的高压产生与油量计量两大基本功能分离,分别由燃油泵和电控喷油器承担,这就为灵活而又精确地进行电子控制提供了前提条件,特别适合于现代缸内直喷式汽油机需要根据负荷在进气和压缩行程喷射实现分层混合汽和均质混合汽运行之间的转换,为喷油系统与充量运动和燃烧过程的匹配提供了极大的自由度。

因此,现代缸内直喷式汽油机几乎无不例外都采用这种共轨喷油系统,本文将着重以这种喷油系统为例介绍有关的内容。

  1.3.2 低压混合汽直接喷射系统

  如图13右所示的澳大利亚奥比特(Orbital)公司为二冲程汽油机开发的低压空气辅助喷射系统就是属于这种类型,其燃油以0.6~0.8MPa,压缩空气以0.5MPa压力喷入预混合室,形成混合汽后再喷入汽缸。

喷雾的油滴直径优于高压喷射系统,只有10μm左右。

为了能应用于四冲程汽油机,奥地利AVL公司还曾开发过另一种空气辅助喷射系统,即利用上一循环压缩行程中的高压气体进入预混合室与喷入的燃油形成混合汽后再喷入汽缸。

美国Ford公司也曾开发过一种类似的空气辅助喷射系统,并曾试用于四冲程直喷式汽油机。

阻碍这类低压空气辅助喷射系统得到广泛应用的主要原因是:

虽然其改善了混合汽的形成,在小缸径的情况下可避免燃油湿壁现象,但是需要额外的压缩空气。

这非但增加了制造成本,而且其能量消耗会使汽油机的燃油耗增加1%~4%,同时相对较低的喷油压力使得可供选择的喷油终点受到缸内压力的限制,尤其是在增压发动机上。

至于AVL公司开发的那种空气辅助喷射系统,则酷似非直喷式柴油机,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1