日产500t浮法玻璃熔窑及锡槽设计八章耐材及第九章主参第十章参考文献附录外文翻译.docx
《日产500t浮法玻璃熔窑及锡槽设计八章耐材及第九章主参第十章参考文献附录外文翻译.docx》由会员分享,可在线阅读,更多相关《日产500t浮法玻璃熔窑及锡槽设计八章耐材及第九章主参第十章参考文献附录外文翻译.docx(18页珍藏版)》请在冰豆网上搜索。
日产500t浮法玻璃熔窑及锡槽设计八章耐材及第九章主参第十章参考文献附录外文翻译
第八章.熔窑及锡槽主要部位耐火材料的配置
耐火材料是玻璃熔窑的主要构筑材料,它对玻璃质量、能耗、产品成本都有决定性影响。
玻璃熔窑用的耐火材料在生产当中将会受到侵蚀,这里要求它的侵蚀物必须均能溶解于玻璃液中,不致造成玻璃缺陷。
从另一个人角度来说,玻璃熔窑用的耐火材料应具有很强的抗侵蚀性能,使玻璃熔窑有较长的使用寿命,并尽可能少的减少结石、条纹和气泡的产生。
因此,合理选择和使用耐火材料是熔窑和锡槽设计以及日常操作的十分重要的内容,要做到这些必须掌握两点,一是所选用的耐火材料的特性和使用场合,二是熔窑和锡槽各部位的使用条件和蚀损机理。
8.1浮法玻璃耐火材料配置的原则[8]
1.满足必要的使用性能,如高温性能、化学稳定性、热稳定性、体积稳定性和机械强度;
2.不污染玻璃液,,不影响玻璃液质量;
3.尽可能长的使用寿命;
4.砌在一起的不同材质的耐火材料之间,在高温下没有接触反应;
5.尽可能少的用料量和散热量损失;
6.易损部位用优质耐火材料,其他部位用一般材料,做到“合理配套,窑龄同步”。
8.2熔窑耐火材料
8.2.1与火焰接触部分耐火材料的选择
1.窑顶和胸墙用砖
熔窑火焰空间大碹采用70mm保温涂料,134mm轻质硅砖,30mm硅质密封料,450mm优质硅砖;胸墙内侧采用电熔AZS-33砖外加保温砖。
2.前脸墙用砖
前脸墙目前使用电熔AZS-33砖或烧结AZS砖,也有将优质硅砖和烧结AZS砖复合使用的。
本次设计采用上部用优质硅砖,下部用电熔AZS-33砖。
3.小炉用砖
小炉用砖主要有喷火口碹砖、小炉斜碹头层转、小炉底板砖和小炉舌头碹和喷嘴砖。
这些砖均选用AZS砖。
小炉碹顶保温砖采用轻质粘土保温砖。
4.蓄热室四周的内壁上用优质硅砖,下部用低气孔粘土砖,最下部用普通粘土砖砌筑,上部蓄热室顶碹采用优质硅砖砌筑,并用轻质粘土保温砖保温,底部炉条碹用低气孔粘土砖。
8.2.2与玻璃液接触部分耐火材料的选用
池窑内从熔化部、冷却部直到成型部的整个池窑都与玻璃液相接触。
要吃内进行着配合料熔制成合格玻璃的全过程,温度范围从1200℃到1600℃,玻璃液处于对流状态。
1.池壁砖
池壁砖主要采用电熔锆刚玉转,最近也有采用α-β电熔刚玉砖。
本次设计采用α-β电熔刚玉砖。
2.池底砖
池底砖所处的条件是玻璃液温度较低,流动较弱。
现在采用多层式复合池底结构,一般是地砖为300mm粘土大砖,粘土大砖的上面铺设25mm锆英砂或电熔锆刚玉捣打料。
铺面砖采用75mm电熔AZS砖。
3.加料池砖
加料池受到粉料和玻璃液的侵蚀、料层的磨损、液流的冲刷、火焰的影响,损坏较严重。
尤其是加料池转角砖,因此在转角处用含ZrO241%的电熔刚玉转。
除转角砖以外,其他部位可以用普通浇铸的AZS-33砖。
4.卡脖用砖
池底采用AZS-33砖和粘土大砖,池壁采用AZS-33砖,但在卡脖拐角处采用倾斜浇注4#无缩孔电熔AZS砖加强砖材抗侵蚀能力,卡脖矮碹采用优质硅砖砌筑,卡脖处使用优质硅砖砌筑。
4.冷却部用砖
玻璃液温度较熔化部低,对砖的侵蚀较轻。
采用氧化法生产的AZS-33砖。
5.流道用砖
流道用电熔AZS-33砖或α-Al2O3砖。
8.2.3蓄热室耐火材料的选用
蓄热室使用耐火材料的部位有格子体、炉条碹、蓄热室顶碹、侧墙和中间隔墙。
蓄热室顶碹常选用电熔AZS砖、直接结合镁砖或硅砖。
侧墙和分隔墙的上层选用镁质砖,中层选用镁质砖或低气孔率黏土砖,下层选用低气孔率黏土砖。
炉条碹选用低气孔率黏土砖。
8.3锡槽用耐火材料
1.进口端:
流道流槽和唇砖均采用α-β刚玉砖。
为加强密封性,锡槽前端采用小罩密封结构,与唇砖配套设置,可定边砖和背封砖,使玻璃液流趋于合理,稳定玻璃板跟,稳定生产。
2.槽体:
选用优质槽底砖,并用螺栓固定在槽底钢壳上。
3.胸墙:
选用一些轻质保温砖,加强胸墙保温,减小横向温差。
4.顶盖:
顶盖采用大块耐火砖组合平顶吊挂结
第9章设计说明
9.1重要技术经济指标
熔化能力:
500t/d
熔化率:
2.3912t/(m2·d)
熔化部面积:
357m2
熔化面积:
209.1m2
冷却部面积:
125.49m2
每千克玻璃液耗热量:
7861.75kJ
每天燃油量:
94000kg
9.2主要技术特征
1.投料池
本次设计适当延长了投料池长度,以利于配合料的预熔,减少飞料和飞料熔窑耐火材料的侵蚀,同时改善了投料口处的操作环境。
投料池宽度为8.5m,长度为2.3m。
2.前脸墙
前脸墙采用L型吊墙,可以大幅度降低热量损失,具有预熔化和强制熔化作用。
3.蓄热室
蓄热室采用全分隔式的,有利于对助燃风的流量控制,实现比例调节。
格子体采用筒形格子体,提高热交换面积。
4.卡脖
采用窄长卡脖可有效地减少玻璃的回流,减少对玻璃的二次加热,避免了二次气泡的产生和二次加热的热损失。
卡脖处加水平搅拌器和深层水包,水平搅拌器的使用,使玻璃液能充分混合,澄清均化良好。
深层水包使玻璃液在高温澄清区滞留时间加长,有助于提高玻璃质量,还可以减少回流,减少二次加热热耗,阻止熔化部的浮渣进入冷却部,减少玻璃缺陷。
5.窑池
采用浅池熔化,池窑深度为1.2m,可防止玻璃也在池底形成滞流层,提高玻璃液质量。
加大末对小炉中心线到卡脖的距离,使玻璃液在这段长度内进行充分熔化,并排除玻璃液中的气泡。
6.熔窑保温
对熔化部池壁、大煊顶进行全保温(除碹缝外),对熔化部池底、冷却部进行部分保温。
7.温度曲线
采用“双高形”曲线,其核心是减少处在稠密区的小炉的燃料分配量,降低此处的热负荷。
即提高1号小炉燃料分配量使配合料基本熔化,提高4号小炉的燃料分配量以利于强化玻璃液的高温澄清和均化,降低3号小炉的燃料分配量,以降低此处耐火材料的热负荷(泡沫区在3号小炉区,稠密泡沫热阻较大,传热不好)。
9.3设计总结
在近三个多月的毕业设计过程中,我结合已学过的专业知识,并查阅了大量书籍和参考文献,确保本次设计有据可依。
同时,在设计过程中,结合了我们此前工厂实习的情况,使本次设计和实践相结合,增强了本次设计的正确性和合理性。
同时还要感谢陈文娟老师在设计过程中的耐心指导和同学们的帮助!
通过这次设计,我对本专业的知识体系有了更直接更深刻的了解,已能初步灵活运用专业知识。
通过手工绘图和CAD制图,增强了自己的识图能力和画图能力,同时增加了在本专业中运用电脑画图的能力。
由于本人所学的知识有限,经验较少,在设计过程中难免会有不足之处,希望老师批评指正!
结论
本次设计主要参考几家实际生产厂家使用的玻璃熔窑及锡槽,对原有优质的东西进行有原则的,合理的借鉴,参考最新有关玻璃熔窑最新改进结构,最新技术方面的文章进行参考性,合理的引进。
主要方面是在熔窑结构中的投料池结构、小炉口结构、蓄热室内部结构、卡脖结构、冷却部结构、池底结构、胸墙结构、大碹结构、碹缝结构、锡槽结构及窑体保温结构方面。
本次设计的玻璃熔窑还有待实践的检验,理论上已经合理。
在以后的玻璃熔窑的设计中,要从理论方面计算分析,联系实际厂家实例,参考已有的数据,合理的引用已经成功的优质元素,设计出符合我国实际、施工可能、操作方便、技术先进、经济实用、节能环保的现代新型玻璃熔窑。
随着我国科学技术的发展,玻璃熔窑还会更加先进,窑龄更长。
谢辞
四年的大学生生活马上就要结束了,回顾往昔,几多艰辛,几多感慨!
在我求学的道路上,有许许多多可亲可敬的老师给予了我知识和力量,我将永远不会忘记你们不倦的教诲!
本设计是在陈文娟老师的精心指导下完成的,点点滴滴无不凝聚着他的汗水。
老师严谨的科学态度、渊博的学识,时刻激励我在学业上不断地追求,趁此设计完成之际,谨向陈老师表示衷心的感谢和崇高的敬意!
陈老师以其敏锐的思维和诚恳的语言,为我鼓起信心。
设计完成后,陈老师不顾工作繁忙为我修改设计。
从前言到设计计算再到外文资料的翻译,陈老师都仔细地进行审阅和批改,应该说,设计的各个环节都渗透着陈老师的汗水。
刘缙老师、曹钦存老师、赵跃智老师也给予了我精心的指导,同窗学友杨红波、张超、王豫辉、宗健也给了我很大的帮助,在此一并致谢!
感谢材料科学与工程系,感谢与我朝夕相处的老师和同学们,生命因为有了你们而精彩!
参考文献
[1]张战营,刘缙,谢军主编.浮法玻璃生产技术与设备第二版.化学工业出版.2010.
[2]赵彦钊,殷海荣主编.玻璃工艺学.化学工业出版.2008.
[3]王承遇,陶瑛主编.玻璃成分设计与调整.化学工业出版社.2006.
[4]宋晓岚,叶昌,何小明编著.无机材料工厂工艺设计概论.冶金工业出版社.2009.
[5]徐德龙,谢峻林编著.材料工程基础.武汉理工大学出版社.2008.
[6]孙承绪,陈润生,詹美瑶等编著.玻璃窑炉热工计算及设计.中国建筑工业出版社.1987.
[7]樊德琴编著.玻璃工业热工设备及热工测量.武汉工业大学出版社.1993.
[8]武丽华,陈福,李慧琴等编著.玻璃熔窑耐火材料.化学工业出版社.2009.5.
[9]姜洪舟主编.无机非金属材料热工设备.武汉工业大学出版社.2009
[10]杨保泉.玻璃厂工艺设计概论.武汉工业大学出版社.1988
[11]陈恭淳.浮法玻璃工厂建线生产.科学出版社.1983
[12]陈国平.玻璃的配料与熔制.化学工业出版社.2005
[13]蔡月民主编.硅酸盐热能工程.化学工业出版社.1998
[14]夏大全.赵从旭.玻璃工业节能技术.中国建材工业出版社.2006
[15]蔡增基等.流体力学泵与风机.中国建筑工业出版社.1999
附录
(一).玻璃原料成分(%)
L
SiO2
Al2O3
Fe2O3
CaO
MgO
R2O
Na2CO3
Na2SO4
C
砂岩
0.5
97.64
0.60
0.15
0.04
钽铌石
1.0
66.42
14.96
0.13
0.20
0.08
6.57
石灰石
0.1
2.53
0.09
0.10
51.36
1.22
白云石
0.4
0.97
0.31
0.09
31.24
20.60
纯碱
1.0
58.32
99.56
芒硝
2.5
44.24
99.03
煤粉
87.12
(二)玻璃成分(%)
氧化物
SiO2
Al2O3
Fe2O3
CaO
MgO
R2O
SO3
Wt%
72.19
1.60
0.17
8.10
4.01
13.72
0.08
(三)燃料种类、成分
重油成分(%)
C
H
O
N
S
A
水分
总和
86.32
12.26
0.55
0.20
0.15
0.02
0.50
100.00
(四)产品比例
2mm
3mm
5mm
6mm
10%
50%
30%
10%
(五)主导自然条件
1.主导风向
夏季:
西南冬季:
冬季
2.平均大气压
夏季:
755mm冬季:
765mm
3.温度
平均月最高:
25℃
月绝对最高:
36℃
月绝对最低:
-12℃
4.地下水位:
-5800mm
5.地震烈度:
六度
(六)水电
水:
本厂自己供给电:
本地电网供给
(七)运输方式
自定
外文资料
OURTRIBUNE
WHATISTHEBESTDESIGNFORAGLASSFURNACE
N.Ya.Suvorov
(KurlovGlassworks)
During195354therewasadiscussioninGlassandCeramicsonthedesignoftankfurnace.Thediscussionwasveryinformativeforworkersintheglassindustry,foritacquaintedthemwiththeexistingviewsonthismatter,althoughitwasnotcompletedbythepresentationofconclusionsrelatingtothecoursestobefollowedinthedesignofglassfurnaces.
Itmustbeacknowledgedthatsciencehasnotyetsucceededinmakingacompletestudyandsystematizationofexperiencegainedintheoperationofglassfurnaceandhasnotyetbeenabletotellushowtodesignfurnacesthatwillcorrespondtothepresentlevelofknowledgeandtechnology.
Whatisthefundamentalprinciplewhich,inouropinion,mustformthebasisofthedesignofperfecttankfurnaces,Itwillbeobviousthatbya"perfecttankfurnace"wemeanonethatisasefficientaspossibleintechnicalandeconomicrespects.
Thedesignofatankfurnacemustbesuchthatthemeltedglasspassedtothemachinesinstrictsequence.Forexample,ifthecapacityofthefurnacesis1000tonsofglassandthemachinesonlyaftertendays.
Weconsiderthatthetimehascomewhenitshouldbepossibletoarriveatawellgroundedconclusionconcerningthedistributionofcurrentsofglassintankfurnacesandtodesignafurnaceaccordingly,sothatourbasicprincipleofthestrictsequenceofthemeltedglasstothemachinescanberealized.
Itisessentialtoeliminateundesirablecurrentsofglassandtheformationoflayersdifferingincomposition,i.e.tokeepthekineticsofglasswithinlimitssetbythespecialdesignofthetankfurnace,bytheheatingscheduleadopted,andpossiblybythemechanicalactionexertedionthemeltedglass.Ourproposeddesignforsuchafurnaceisrepresentedinfigures1-6.
Wedonotconsiderthattheproblemofconstructingaglasstankfurnaceofourdesignismoredifficultthanmanyothersproblemsalreadysolvedbyscienceandtechnology.Thesolutionofthisproblemiswithinthepowerofourplanninganderectionorganizations.
Inthelightoftherequirementsthatwehavemadewithrespecttothedesignofglassfurnaces,thetanksoftheverylargetankfurnacenowinuseintheglassindustrygivetheimpressionoflarge"fryingpans"inwhich,attheglasssurface,theglassisnotmeltedbut"roasted",andintheroastedcondition,afterbeingcooledfor10-12hours,ispassedtothemachines.
Whensuchapparentlywell-meltedglassisexaminedoptically,itisfoundthatthereareinnumerabledefects:
streaks,whirls,stripes,threads,etc.,whichdifferfromthesurroundingmass.Suchaglassisnon-uniforminmechanicalandtechnicalproperties;theproductivityofthemachinesisnotashighasitmightbeandtheglassisoflowerutility.
Inthemanufactureofopticalglassthesedefectsareeliminatedbyprolongedstirringoftheglasswithspecialstirrers.Inthemanufactureofsheetglass,pressedware,etc.,noeffortismadetoovercomethesedefects,andallisleftinthecareofthe"lawsofthermalmovementintheglassmass".Rapidcoolingofglass,particularlywhenthereinanegativepressureovertheglasssurfaceinthecoolingzone–nottospeakoftheuseofcoolersandblowers–resultsintheformationoflayersdifferinginviscosityandthereforeintheproductionofglassfullofwhirlsandwaves,varyinginthickness,badlyannealed,notthermallydurable,givingmuchbreakageduringprocessing,andnotdurableinuse.
Slowcoolinggivesglassthatismorestableagainstleaching.Rapidlycooledglasshasdifferentphysicochemicalpropertiesthanthesameglasscooledslowly,Wecannotagreewiththeassertionthatglass,havingattainedtoadefinitedegreeofclarityduringmelting,cannotbesubmittedtoatemperaturehigherthanthatpreviouslyattained,norwiththerecommendationthatcoolingshouldberapidandsofixthestateoftheglasswithallitsestablishedandnon-establishedequilibria.Also,wecannotaccepttheadvicethatweshouldalwaysadjusttheatmosphericregimeofthefurnacetothecourseofthemeltingprocess.Suchadviceistheoreticalandcannotserveasaguidingprincipleforproductionpersonal.
Preventionoftheoverheatingoftheglassbyincreaseinthedimensionsofthefurnaceorwiththeaidofcoolersandventilatorsmustberegardedashighlyerroneous.
Themainandgreatestdefectoflargetankfurnaceandofallfurnacesingeneral,particularlythosewithoutbarriers(floatingbridges,bridgewallsetc.)isthattheupperlayerofglassmovesveryrapidlytotheworkingend.Thishasmanyundesirableconsequence,particularlyinthenon-barriermethodofformingsheetglassbyverticaldrawingmachines.
Wemaintainthatglassoftheupper,workinglayer,movingovertheintermediatel