CAN与RS485区别.docx

上传人:b****4 文档编号:3998217 上传时间:2022-11-27 格式:DOCX 页数:13 大小:43.33KB
下载 相关 举报
CAN与RS485区别.docx_第1页
第1页 / 共13页
CAN与RS485区别.docx_第2页
第2页 / 共13页
CAN与RS485区别.docx_第3页
第3页 / 共13页
CAN与RS485区别.docx_第4页
第4页 / 共13页
CAN与RS485区别.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

CAN与RS485区别.docx

《CAN与RS485区别.docx》由会员分享,可在线阅读,更多相关《CAN与RS485区别.docx(13页珍藏版)》请在冰豆网上搜索。

CAN与RS485区别.docx

CAN与RS485区别

RS-485

目录

RS485简介

RS485接口

RS485电缆

RS485布网

RS485和其它总线网络的区别:

RS485简介

  智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所垄

断。

究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信接口。

最初是数据模拟信号输出简单过程量,后来仪表接口是RS232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能。

随后出现的RS485解决了这个问题。

下面我们就简单介绍一下RS485。

RS485接口

  RS485采用差分信号负逻辑,+2V~+6V表示“0”,-6V~-2V表示“1”。

RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上最多可以挂接32个结点。

在RS485通信网络中一般采用的是主从通信方式,即一个主机带多个从机。

很多情况下,连接RS-485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。

而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,这有二个原因:

(1)共模干扰问题:

RS-485接口采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。

但人们往往忽视了收发器有一定的共模电压范围,RS-485收发器共模电压范围为-7~+12V,只有满足上述条件,整个网络才能正常工作。

当网络线路中共模电压超出此范围时就会影响通信的稳定可靠,甚至损坏接口。

(2)EMI问题:

发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),就会以辐射的形式返回源端,整个总线就会像一个巨大的天线向外辐射电磁波。

  由于PC机默认的只带有RS232接口,有两种方法可以得到PC上位机的RS485电路:

(1)通过RS232/RS485转换电路将PC机串口RS232信号转换成RS485信号,对于情况比较复杂的工业环境最好是选用防浪涌带隔离珊的产品。

(2)通过PCI多串口卡,可以直接选用输出信号为RS485类型的扩展卡。

RS485电缆

  在低速、短距离、无干扰的场合可以采用普通的双绞线,反之,在高速、长线传输时,则必须采用阻抗匹配(一般为120Ω)的RS485专用电缆(STP-120Ω(forRS485&CAN)onepair18AWG),而在干扰恶劣的环境下还应采用铠装型双绞屏蔽电缆(ASTP-120Ω(forRS485&CAN)onepair18AWG)。

在使用RS485接口时,对于特定的传输线路,从RS485接口到负载其数据信号传输所允许的最大电缆长度与信号传输的波特率成反比,这个长度数据主要是受信号失真及噪声等影响所影响。

理论上,通信速率在100Kpbs及以下时,RS485的最长传输距离可达1200米,但在实际应用中传输的距离也因芯片及电缆的传输特性而所差异。

在传输过程中可以采用增加中继的方法对信号进行放大,最多可以加八个中继,也就是说理论上RS485的最大传输距离可以达到9.6公里。

如果真需要长距离传输,可以采用光纤为传播介质,收发两端各加一个光电转换器,多模光纤的传输距离是5~10公里,而采用单模光纤可达50公里的传播距离。

RS485布网

  网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。

在构建网络时,应注意如下几点:

  

(1)采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。

有些网络连接尽管不正确,在短距离、低速率仍可能正常工作,但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,会造成信号质量下降。

  

(2)应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。

下列几种情况易产生这种不连续性:

总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。

  总之,应该提供一条单一、连续的信号通道作为总线。

  在RS485组网过程中另一个需要注意的问题是终端负载电阻问题,在设备少距离短的情况下不加终端负载电阻整个网络能很好的工作但随着距离的增加性能将降低。

理论上,在每个接收数据信号的中点进行采样时,只要反射信号在开始采样时衰减到足够低就可以不考虑匹配。

但这在实际上难以掌握,美国MAXIM公司有篇文章提到一条经验性的原则可以用来判断在什么样的数据速率和电缆长度时需要进行匹配:

当信号的转换时间(上升或下降时间)超过电信号沿总线单向传输所需时间的3倍以上时就可以不加匹配。

  一般终端匹配采用终端电阻方法,RS-485应在总线电缆的开始和末端都并接终端电阻。

终接电阻在RS-485网络中取120Ω。

相当于电缆特性阻抗的电阻,因为大多数双绞线电缆特性阻抗大约在100~120Ω。

这种匹配方法简单有效,但有一个缺点,匹配电阻要消耗较大功率,对于功耗限制比较严格的系统不太适合。

另外一种比较省电的匹配方式是RC匹配。

利用一只电容C隔断直流成分可以节省大部分功率。

但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。

还有一种采用二极管的匹配方法,这种方案虽未实现真正的“匹配”,但它利用二极管的钳位作用能迅速削弱反射信号,达到改善信号质量的目的,节能效果显著。

  最近两年一些公司基于部分企业信息化的实施已完成,工厂中已经铺设了延伸到车间每个办公室、控制室的局域网的现状,推出了串口服务器来取代多串口卡,这主要是利用企业已有的局域网资源减少线路投资,节约成本,相当于通过tcp/ip把多串口卡放在了现场。

RS485和其它总线网络的区别:

  我们把工业网络归结为三类:

RS485网络、HART网络和现场总线网络。

  HART网络:

HART是由现在的艾默生提出一个过度性总线标准,他主要是在4~20毫安电流信号上面叠加数字信号,物理层采用BELL202频移键控技术,以实现部分智能仪表的功能,但此协议不是一个真正意义上开放的标准,要加入他的基金会才能拿到协议,加入基金会要一部分的费用。

技术主要被国外几家大公司垄断,近两年国内也有公司在做,但还没有达到国外公司的水平。

现在有很大一部分的智能仪表都带有HART圆卡,都具备HART通讯功能。

但从国内来看还没有真正利用其这部分功能,最多只是利用手操器对其进行参数设定,没有发挥出HART智能仪表应有的功能,没有联网进行设备监控。

从长远来看由于HART通信速率低组网困难等原因,HART仪表的采购量会呈现下滑趋势,但由于HART仪表已经有十多年的历史,现在装数量非常大,对于一些系统集成商来说还有很大的可利用空间。

  现场总线网络:

现场总线技术是当今自动化领域技术发展热点之一,被誉为自动化领域的计算机局域网,它的出现标志着自动化控制技术又一个新时代的开始。

现场能支持双向、多节点、总线式的全数字通信。

现场总线技术近年来成为国际上自动化和仪器仪表发展的热点,它的出现是传统的控制系统结数字化、信息化、网络化朝着智能化、控制设备的数字化、串行、多站通信的网、分散化的总线是连接设置在控制现场的仪表与设置在控制室内的构产生了革命性的变化,是自控系统络。

其关键标志是方向迈进,形成新型的网络集成式全分布式控制系统---现场总线控制系统FCS(FieldbusControlSystem)。

但是现在的现场总线的各种标准并行存在并且都有自己的生存领域,还没有形成真正统一的标准,关键是看不到什么时候能形成统一的标准,技术也不够成熟。

另外现场总线的仪表种类还比较少可供选择的余地小,价格也偏高,从最终用户的角度看大多还处于观望状态,都想等到技术成熟之后在考虑,现在实施的少。

  RS485网络:

RS485/MODBUS是现在流行的一种布网方式,其特点是实施简单方便,而且现在支持RS485的仪表又特多,特别是在油品行业RS485/MODBUS简直是一统天下,现在的仪表商也纷纷转而支持S485/MODBUS,原因很简单,原来的HART仪表想买一个转换口非常困难而且价格昂贵,RS485的转换接口就便宜的多而且种类繁多。

至少在低端市场RS485/MODBUS还将是最主要的组网方式,近两三年内不会改变。

如今HART仪表想买一个转换口并不困难而且价格也不再昂贵,目前国内有不少HART协议转换器,例如:

SM100-A/SM100-B/SM100-C(嘉兴市松茂电子出的三款)现已基本满足国内用户的需求,同时HART-RS232/HART-RS485还支持MODBUS协议,能很好的满足不同用户的需求。

CAN总线

百科名片

  

CAN是控制器局域网络(ControllerAreaNetwork,CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准(ISO118?

8)。

是国际上应用最广泛的现场总线之一。

在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。

近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境

目录

基本概念

CAN总线优势

1.网络各节点之间的数据通信实时性强

2.缩短了开发周期

3.已形成国际标准的现场总线

4.最有前途的现场总线之一

产生与发展

CAN总线特点

1.完成对通信数据的成帧处理

2.使网络内的节点个数在理论上不受限制

3.可在各节点之间实现自由通信

4.结构简单

CAN总线技术介绍

1.位仲裁

2.CAN与其它通信方案的比较

3.CAN的报文格式

4.CAN数据帧的组成

5.数据错误检测

6.硬同步和重同步

CAN总线可靠性

应用举例

CAN总线开发测试工具

基本概念

  CAN是ControllerAreaNetwork的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。

在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。

由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。

为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986年德国电气商博世公司开发出面向汽车的CAN通信协议。

此后,CAN通过ISO11898及ISO11519进行了标准化,现在在欧洲已是汽车网络的标准协议。

  现在,CAN的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。

现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。

它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。

CAN总线优势

  CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。

较之目前许多RS-485基于R线构建的分布式控制系统而言,基于CAN总线的分布式控制系统在以下方面具有明显的优越性:

网络各节点之间的数据通信实时性强

  首先,CAN控制器工作于多种方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据,且CAN协议废除了站地址编码,而代之以对通信数据进行编码,这可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。

而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差;

缩短了开发周期

  CAN总线通过CAN收发器接口芯片82C250的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。

这就保证不会在出现在RS-485网络中的现象,即当系统有错误,出现多节点同时向总线发送数据时,导致总线呈现短路,从而损坏某些节点的现象。

而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现象在网络中,因个别节点出现问题,使得总线处于“死锁”状态。

而且,CAN具有的完善的通信协议可由CAN控制器芯片及其接口芯片来实现,从而大大降低系统开发难度,缩短了开发周期,这些是仅有电气协议的RS-485所无法比拟的。

已形成国际标准的现场总线

  另外,与其它现场总线比较而言,CAN总线是具有通信速率高、容易实现、且性价比高等诸多特点的一种已形成国际标准的现场总线。

这些也是目前CAN总线应用于众多领域,具有强劲的市场竞争力的重要原因。

最有前途的现场总线之一

  CAN即控制器局域网络,属于工业现场总线的范畴。

与一般的通信总线相比,CAN总线的数据通信具有突出的可靠性、实时性和灵活性。

由于其良好的性能及独特的设计,CAN总线越来越受到人们的重视。

它在汽车领域上的应用是最广泛的,世界上一些著名的汽车制造厂商,如BENZ(奔驰)、BMW(宝马)、PORSCHE(保时捷)、ROLLS-ROYCE(劳斯莱斯)和JAGUAR(美洲豹)等都采用了CAN总线来实现汽车内部控制系统与各检测和执行机构间的数据通信。

同时,由于CAN总线本身的特点,其应用范围目前已不再局限于汽车行业,而向自动控制、航空航天、航海、过程工业、机械工业、纺织机械、农用机械、机器人、数控机床、医疗器械及传感器等领域发展。

CAN已经形成国际标准,并已被公认为几种最有前途的现场总线之一。

其典型的应用协议有:

SAEJ1939/ISO11783、CANOpen、CANaerospace、DeviceNet、NMEA2000等。

产生与发展

  控制器局部网(CAN-CONTROLLERAREANETWORK)是BOSCH公司为现代汽车应用领先推出的一种多主机局部网,由于其高性能、高可靠性、实时性等优点现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑、环境控制等众多部门。

控制器局部网将在中国迅速普及推广。

  随着计算机硬件、软件技术及集成电路技术的迅速发展,工业控制系统已成为计算机技术应用领域中最具活力的一个分支,并取得了巨大进步。

由于对系统可靠性和灵活性的高要求,工业控制系统的发展主要表现为:

控制面向多元化,系统面向分散化,即负载分散、功能分散、危险分散和地域分散。

  分散式工业控制系统就是为适应这种需要而发展起来的。

这类系统是以微型机为核心,将5C技术--COMPUTER(计算机技术)、CONTROL(自动控制技术)、COMMUNICATION(通信技术)、CRT(显示技术)和CHANGE(转换技术)紧密结合的产物。

它在适应范围、可扩展性、可维护性以及抗故障能力等方面,较之分散型仪表控制系统和集中型计算机控制系统都具有明显的优越性。

  典型的分散式控制系统由现场设备、接口与计算设备以及通信设备组成。

现场总线(FIELDBUS)能同时满足过程控制和制造业自动化的需要,因而现场总线已成为工业数据总线领域中最为活跃的一个领域。

现场总线的研究与应用已成为工业数据总线领域的热点。

尽管目前对现场总线的研究尚未能提出一个完善的标准,但现场总线的高性能价格必将吸引众多工业控制系统采用。

同时,正由于现场总线的标准尚未统一,也使得现场总线的应用得以不拘一格地发挥,并将为现场总线的完善提供更加丰富的依据。

控制器局部网CAN(CONTROLLERAERANETWORK)正是在这种背景下应运而生的。

  由于CAN为愈来愈多不同领域采用和推广,导致要求各种应用领域通信报文的标准化。

为此,1991年9月PHILIPSSEMICONDUCTORS制订并发布了CAN技术规范(VERSION2.0)。

该技术规范包括A和B两部分。

2.0A给出了曾在CAN技术规范版本1.2中定义的CAN报文格式,能提供11位地址;而2.0B给出了标准的和扩展的两种报文格式,提供29位地址。

此后,1993年11月ISO正式颁布了道路交通运载工具--数字信息交换--高速通信控制器局部网(CAN)国际标准(ISO11898),为控制器局部网标准化、规范化推广铺平了道路。

CAN总线特点

  CAN总线是德国BOSCH公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。

通信速率可达1MBPS。

完成对通信数据的成帧处理

  CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。

使网络内的节点个数在理论上不受限制

  CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码。

采用这种方法的优点可使网络内的节点个数在理论上不受限制,数据块的标识码可由11位或29位二进制数组成,因此可以定义2或2个以上不同的数据块,这种按数据块编码的方式,还可使不同的节点同时接收到相同的数据,这一点在分布式控制系统中非常有用。

数据段长度最多为8个字节,可满足通常工业领域中控制命令、工作状态及测试数据的一般要求。

同时,8个字节不会占用总线时间过长,从而保证了通信的实时性。

CAN协议采用CRC检验并可提供相应的错误处理功能,保证了数据通信的可靠性。

CAN卓越的特性、极高的可靠性和独特的设计,特别适合工业过程监控设备的互连,因此,越来越受到工业界的重视,并已公认为最有前途的现场总线之一。

可在各节点之间实现自由通信

  CAN总线采用了多主竞争式总线结构,具有多主站运行和分散仲裁的串行总线以及广播通信的特点。

CAN总线上任意节点可在任意时刻主动地向网络上其它节点发送信息而不分主次,因此可在各节点之间实现自由通信。

CAN总线协议已被国际标准化组织认证,技术比较成熟,控制的芯片已经商品化,性价比高,特别适用于分布式测控系统之间的数通讯。

CAN总线插卡可以任意插在PCATXT兼容机上,方便地构成分布式监控系统。

结构简单

  只有2根线与外部相连,并且内部集成了错误探测和管理模块。

CAN总线技术介绍

位仲裁

  要对数据进行实时处理,就必须将数据快速传送,这就要求数据的物理传输通路有较高的速度。

在几个站同时需要发送数据时,要求快速地进行总线分配。

实时处理通过网络交换的紧急数据有较大的不同。

一个快速变化的物理量,如汽车引擎负载,将比类似汽车引擎温度这样相对变化较慢的物理量更频繁地传送数据并要求更短的延时。

  CAN总线以报文为单位进行数据传送,报文的优先级结合在11位标识符中,具有最低二进制数的标识符有最高的优先级。

这种优先级一旦在系统设计时被确立后就不能再被更改。

总线读取中的冲突可通过位仲裁解决。

如图2所示,当几个站同时发送报文时,站1的报文标识符为;站2的报文标识符为;站3的报文标识符为。

所有标识符都有相同的两位01,直到第3位进行比较时,站1的报文被丢掉,因为它的第3位为高,而其它两个站的报文第3位为低。

站2和站3报文的4、5、6位相同,直到第7位时,站3的报文才被丢失。

注意,总线中的信号持续跟踪最后获得总线读取权的站的报文。

在此例中,站2的报文被跟踪。

这种非破坏性位仲裁方法的优点在于,在网络最终确定哪一个站的报文被传送以前,报文的起始部分已经在网络上传送了。

所有未获得总线读取权的站都成为具有最高优先权报文的接收站,并且不会在总线再次空闲前发送报文。

  CAN具有较高的效率是因为总线仅仅被那些请求总线悬而未决的站利用,这些请求是根据报文在整个系统中的重要性按顺序处理的。

这种方法在网络负载较重时有很多优点,因为总线读取的优先级已被按顺序放在每个报文中了,这可以保证在实时系统中较低的个体隐伏时间。

  对于主站的可靠性,由于CAN协议执行非集中化总线控制,所有主要通信,包括总线读取(许可)控制,在系统中分几次完成。

这是实现有较高可靠性的通信系统的唯一方法。

CAN与其它通信方案的比较

  在实践中,有两种重要的总线分配方法:

按时间表分配和按需要分配。

在第一种方法中,不管每个节点是否申请总线,都对每个节点按最大期间分配。

由此,总线可被分配给每个站并且是唯一的站,而不论其是立即进行总线存取或在一特定时间进行总线存取。

这将保证在总线存取时有明确的总线分配。

在第二种方法中,总线按传送数据的基本要求分配给一个站,总线系统按站希望的传送分配(如:

EthernetCSMA/CD)。

因此,当多个站同时请求总线存取时,总线将终止所有站的请求,这时将不会有任何一个站获得总线分配。

为了分配总线,多于一个总线存取是必要的。

  CAN实现总线分配的方法,可保证当不同的站申请总线存取时,明确地进行总线分配。

这种位仲裁的方法可以解决当两个站同时发送数据时产生的碰撞问题。

不同于Ethernet网络的消息仲裁,CAN的非破坏性解决总线存取冲突的方法,确保在不传送有用消息时总线不被占用。

甚至当总线在重负载情况下,以消息内容为优先的总线存取也被证明是一种有效的系统。

虽然总线的传输能力不足,所有未解决的传输请求都按重要性顺序来处理。

在CSMA/CD这样的网络中,如Ethernet,系统往往由于过载而崩溃,而这种情况在CAN中不会发生。

CAN的报文格式

  在总线中传送的报文,每帧由7部分组成。

CAN协议支持两种报文格式,其唯一的不同是标识符(ID)长度不同,标准格式为11位,扩展格式为29位。

  在标准格式中,报文的起始位称为帧起始(SOF),然后是由11位标识符和远程发送请求位(RTR)组成的仲裁场。

RTR位标明是数据帧还是请求帧,在请求帧中没有数据字节。

  控制场包括标识符扩展位(IDE),指出是标准格式还是扩展格式。

它还包括一个保留位(ro),为将来扩展使用。

它的最后四个字节用来指明数据场中数据的长度(DLC)。

数据场范围为0~8个字节,其后有一个检测数据错误的循环冗余检查(CRC)。

  应答场(ACK)包括应答位和应答分隔符。

发送站发送的这两位均为隐性电平(逻辑1),这时正确接收报文的接收站发送主控电平(逻辑0)覆盖它。

用这种方法,发送站可以保证网络中至少有一个站能正确接收到报文。

  报文的尾部由帧结束标出。

在相邻的两条报文间有一很短的间隔位,如果这时没有站进行总线存取,总线将处于空闲状态。

CAN数据帧的组成

  远程帧

  远程帧由6个场组成:

帧起始、仲裁场、控制场、CRC场、应答场和帧结束。

远程帧不存在数据场。

  远程帧的RTR位必须是隐位。

  DLC的数据值是独立的,它可以是0~8中的任何数值,为对应数据帧的数据长度。

  出错帧

  出错帧由两个不同场组成,第一个场由来自各站的错误标志叠加得到,第二个场是出错界定符

  错误标志具有两种形式:

  活动错误标志(Activeerrorflag),由6个连续的显位组成

  认可错误标志(Passiveerrorflag),由6个连续的隐位组成

  出错界定符包括8个隐位

  超载帧

  超载帧包括两个位场:

超载标志和超载界定符

  发送超载帧的超载条件:

  要求延迟下一个数据帧或远程帧

  在间歇场检测到显位

  超载标志由6个显位

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1