The control design for formation flight about multiple Unmanned Aerial Vehicles.docx

上传人:b****6 文档编号:3922517 上传时间:2022-11-26 格式:DOCX 页数:20 大小:288.12KB
下载 相关 举报
The control design for formation flight about multiple Unmanned Aerial Vehicles.docx_第1页
第1页 / 共20页
The control design for formation flight about multiple Unmanned Aerial Vehicles.docx_第2页
第2页 / 共20页
The control design for formation flight about multiple Unmanned Aerial Vehicles.docx_第3页
第3页 / 共20页
The control design for formation flight about multiple Unmanned Aerial Vehicles.docx_第4页
第4页 / 共20页
The control design for formation flight about multiple Unmanned Aerial Vehicles.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

The control design for formation flight about multiple Unmanned Aerial Vehicles.docx

《The control design for formation flight about multiple Unmanned Aerial Vehicles.docx》由会员分享,可在线阅读,更多相关《The control design for formation flight about multiple Unmanned Aerial Vehicles.docx(20页珍藏版)》请在冰豆网上搜索。

The control design for formation flight about multiple Unmanned Aerial Vehicles.docx

ThecontroldesignforformationflightaboutmultipleUnmannedAerialVehicles

Abstract:

ThecontroldesignforformationflightaboutmultipleUnmannedAerialVehicles(UAVs)isahighlycomplexquestionbecauseoftheharshrequirementsimposedbymanykindsoftasks.Theproblemisabouttodesignaformation-holdautopilotforthefollowerUAVs,asaresultthepositionsbetweentheleaderandthefollowerscanbedesignedclosetothedesiredvalue.Inthispaper,wefirstgiveaRecedingHorizonControl(RHC)schemewhichmakestheUAVsformationproblemtoasequenceofonlineoptimizationproblemsoveraplanninghorizon.WenextraisedanovelChemicalReactionOptimization(CRO)approachtoseekoptimalcontrolinputsforthefollowerUAVstokeepcoordinatedflightwiththeminimuminputcostinalloftheplanninghorizons.Severalexperimentalcomparisonresultsaregiventoshowthefeasibilityandeffectivenessofourproposedcontrolmethod.

Keywords:

UnmannedAerialVehicles(UAVs);FormationFlight;ChemicalReactionOptimization

I.Introduction

ModelingandcontrolofformationflightofmultipleUAVsisangrowingtopicofresearchintheaerospacefield,andhasanumberofapplicationsinmilitarymissionssuchasreconnaissanceandsurveillance,taskallocationandtargetdataacquisition,radiojamming,andthesuppressionsofenemyairdefenseaswellasincivilianmissionssuchascropmonitoring,areasearchandrescue.ThemultipleUAVsformationflightproblemaimstoachievedesiredgeometriesbycontrollingtheoverallbehaviorofthegroup.AccuratemaintenanceoftheformationcanoftenaccomplishobjectivesimpossibleforasingleUAVandleadtocertainadvantagessuchasareductionintheformation’sinduceddragandenergysavingfromvortexforcecreatedbytheleadaircraft.DevelopmentofformationcontrolproblemsandnumerousapproachesforUAVsformationcontroldesignhavebeenwelldemonstrated.InRef,R.Sattigerietal.proposedadecentralizedadaptiveoutputfeedbackapproachwhichallowedthevehiclestomaintaintheformationwhileconsideringobstacles.InRef,W.Renetal.developedaleaderlessformationcontrolschemebasedonconsensusalgorithmswhichovercomeasinglepointoffailurefortheformation.InRef,D.Galzietal.proposedHighOrderSlidingMode(HOSM)controllerforaswarmofUAVstoachieveleader/followerscollision-freeformationinthepresenceofunknowndisturbances.InRef,MasayukiSuzukietal.designedathree-dimensionalformationcontrolschemeusingthenewapproachofbifurcatingartificialpotentialfields.InRef,YunfeiZouandPrabhakarR.PagillausedthetheoryofconstraintforcestodeterminethetotalforcerequiredoneveryaircrafttobuildaformationfromarbitraryinitialconditionsforUAVs.Butthesemethodsmaynotbeabletodealwiththeconstraintseasily,suchastheaccelerationofvelocityandangularturnrateconstraints,andcontrolinputsaturationconstraints.Optimization-basedapproachescansolvetheconstraintsofUAVformationcontrolsystemsappropriatelyandhavebeenprovedtoasuccessfulwaytothemultipleUAVsformationproblems.Amongthemostpopularoptimization-basedmethodsisRHCmethod.

II.ProblemFormulation

2.1ModelofUAVflightdynamicsandcontrolsystems

TheequationsofmotiondescribingUAVflightdynamicsaregivenasfollows[23,24]:

Forceequations:

(1)

Kinematicequations:

(2)

Momentequations:

(3)

Navigationequations:

(4)

Inthispaper,wereducedthecomplexmodeltoasimplermodelforthepurposeofguidancelawdesign.Accordingly,first-ordersystemsareadoptedtorepresenttwocontrolchannelsincludingtheUAVflightdynamicsasfollows:

(speedcontrolchannel)(5)

(headinganglecontrolchannel)(6)

Where

arethetimeconstantsand

arethecontrolcommandinputofeachcontrolloop.

2.2RecedingHorizonControl

Recedinghorizoncontrol(RHC),alsoknownasmodelpredictivecontrol(MPC),isafeedbackcontrolschemeinwhichafinitehorizonopen-loopoptimizationproblemissolvedateachsamplinginstant[25,26].

TheRHCprocedureworksasshowninFig.1.Attimet,weconsideratimeintervalextendingpstepsintothefuture,t,t+1,…,t+p.Wethencarryoutthefollowingsteps:

(1)Replacealltheuncertainquantitiesoverthepredictionhorizonpwiththeirestimatesusingtheinformationavailableattimettopredictthefuturedynamicbehaviorofthesystem.

(2)Optimizeapredeterminedperformanceobjectivefunctionsubjecttotheestimateddynamicsandconstraints.Theoptimizationresultisaplanofactionforthenextpsteps.

(3)Determinetheinputoveracontrolhorizonmusingtheplanofaction.Atthenexttimestep,theprocessisrepeated,withtheupdatedestimatesofthecurrentstateandfuturequantities.

Fig.1ProcedureofRecedingHorizonControl

 

2.3Leader-followerformationflightmodel

Inthispaper,wemainlyfocusonmultipleUAVsformationproblemonahorizontalplane.Thehorizontalformationgeometricparametersaretheforwardclearance

andthelateralclearance

asdefinedinFig.2.ThereferencepositionforthefollowerUAVcanbecalculatedusingthefollowingrelationship:

(7)

where

representthefollower’sdesiredposition,

and

representthepositionandtheheadingangleoftheleaderUAV.

and

areexpressedas:

(8)

(9)

Fig.2HorizontalFormationGeometry

Weformulatearecedinghorizoncontrolschemebasedonthecostfunction.Attimek,thecontrollerpredictsacontrolsequencefromtimektotime(k+p),whichcanberepresentedby

…,

.Usingthiscontrolsequenceandthecurrentstateofthesystem

thestateattimek+1,…,k+p,whicharerepresentedby

…,

canbeobtained.Thefitnessfunctionattimekcanbedefinedas:

(10)

subjectto

(11)

whereQandRarepositive-definiteweightedmatrices.

isreferencestateoffollowerUAVsattimek.

isthestateoffollowerUAVsattimek+joverthepredictionhorizon.

isthesamplingtime.

Fig.3RecedingHorizonControlScheme

Minimizingthisfitnessfunctionyieldsanoptimalcontrolsequence,thenthefirstmcontrolactionsinthissequenceisappliedtotheformationflightsystem.Attimek+m,repeatsampling,predicting,optimizationandimplementing.ThisprocedurecanbedescribedasFig.3.

 

III.PrinciplesofthebasicCROalgorithm

ChemicalReactionOptimization(CRO)isarecentlyestablishedmetaheuristicsforoptimization,inspiredbythenatureofchemicalreactions.Inmicroscopicview,achemicalreactionstartswithsomeunstablemoleculeswithexcessiveenergy.Themoleculesinteractwitheachotherthro-ughasequenceofelementaryreactions.Attheend,theyareconvertedtothosewithminimumenergytosupporttheirexistence.ThispropertyisembeddedinCROtosolveoptimizationproblems.

Ingeneral,theprinciplesofchemicalreactionsaregovernedbythefirsttwolawsofthermodynamics.Thefirstlaw(conservationofenergy)saysthatenergycannotbecreatedordestroyed;energycantransformfromoneformtoanotherandtransferfromoneentitytoanother.Thesecondlawsaysthattheentropyofasystemtendstoincrease,whereentropyisthemeasureofthedegreeofdisorder.Potentialenergyistheenergystoredinamoleculewithrespecttoitsmolecularconfiguration.Whenitisconvertedtootherforms,thesystembecomesmoredisordered.Allreactingsystemstendtoreachthestateofequilibrium,whosepotentialenergydropstoaminimum.InCRO,wecapturethephenomenonbyconvertingpotentialenergytokineticenergyandbygraduallylosingtheenergyofthechemicalmoleculestothesurroundings.

3.1Themanipulatedagent

CROisamulti-agentalgorithmandthemanipulatedagentsaremolecules.Eachmoleculehasseveralattributes,someofwhichareessentialtothebasicoperationsofCRO.Theessentialattributesinclude:

themolecularstructure(ω);thepotentialenergy(PE);thekineticenergy(KE);thenumberofhits(NumHit);theminimumstructure(Min-Struct);theminimumPE(MinPE);andtheminimumhitnumber(MinHit).

3.2Elementaryreactions

Achemicalchangeofamoleculeistriggeredbyacollision.Therearetwotypesofcollisions:

uni-molecularandinter-molecularcollisions.Weconsiderfourkindsofelementaryreactions:

on-wallineffectivecollision,decomposition,inter-molecularineffectivecollision,andsynthesis.Thetwoineffectivecollisionsimplementlocalsearch(intensification)whiledecompositionandsynthesisgivetheeffectofdiversification.Anappropriatemixtureofintensificationanddiversificationmakesaneffectivesearchoftheglobalminimuminthesolutionspace.

3.2.1On-wallIneffectiveCollision

Anon-wallineffectivecollisionoccurswhenamoleculehitsthewallandthenbouncesback.Somemolecularattributeschangeinthiscollision,andthus,themolecularstructurevariesaccordingly.Asthecollisionisnotsovigorous,theresultantmolecularstructureshouldnotbetoodifferentfromtheoriginalone.Supposethecurrentmolecularstructureisω.Themoleculeintendstoobtainanewstructureω`=Neighbor(ω)initsneighborhoodonthePESinthiscollision.Thechangeisallowedonlyif

PEω+KEω≥PEω`

Weget

KEω`=(PEω+KEω–PEω`)×q

whereq∈[KELossRate,1],and(1−q)representsthefractionofKElosttotheenvironmentwhenithitsthewall.KELossRateisasystemparameterwhichlimitsthemaximumpercentageofKElostatatime.Thelostenergyisstoredinthecentralenergybuffer.Thestoredenergycanbeusedtosupportdecomposition.Ifitdoesnothold,thechangeisprohibitedandthemoleculeretainsitsoriginalω,PEandKE.

3.2.2Decomposition

Decompositionr

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1