高一数学必修一公式大全范文.docx
《高一数学必修一公式大全范文.docx》由会员分享,可在线阅读,更多相关《高一数学必修一公式大全范文.docx(12页珍藏版)》请在冰豆网上搜索。
高一数学必修一公式大全范文
一名高中生,要有最科学的学习方法,才能事半功倍。
比如,在数学学习当中,高一同学要能够学会检查和分析,要掌握自己学习的进度,还要愿意动脑记忆,高一的数学也是如此,在这里整理了相关资料,希望能帮助到您。
一、集合有关概念
集合的含义
集合的中元素的三个特性
(1)元素的确定性,
(2)元素的互异性,
(3)元素的无序性,
集合的表示{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法列举法与描述法。
注意常用数集及其记法非负整数集(即自然数集)记作N
正整数集N*或N+整数集Z有理数集Q实数集R
1)列举法{a,b,c……}
2)描述法将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{xR|x-3>2},{x|x-3>2}
3)语言描述法例{不是直角三角形的三角形}
4)Venn图:
4、集合的分类
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例{x|x2=-5}
二、集合间的基本关系
“包含”关系—子集注意有两种可能
(1)A是B的一部分,;
(2)A与B是同一集合。
反之:
集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
“相等”关系A=B(5≥5,且5≤5,则5=5)
实例设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即①任何一个集合是它本身的子集。
AA
②真子集:
如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)
③如果AB,BC,那么AC
④如果AB同时BA那么A=B
不含任何元素的集合叫做空集,记为φ
规定:
空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作AB(读作‘A并B’),即AB={x|xA,或xB}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,即
CSA=韦恩图示性质AA=A
Aφ=φ
AB=BA
ABA
ABB
AA=A
Aφ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=Cu(AB)
(CuA)(CuB)
=Cu(AB)
A(CuA)=U
A(CuA)=φ.
例题
下列四组对象,能构成集合的是()
A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数
集合{a,b,c}的真子集共有个
若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.
设集合A=,B=,若AB,则的取值范围是
50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。
用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.
已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠φ,A∩C=φ,求m的值
二、函数的有关概念
函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称fA→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意
定义域能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
(见课本21页相关例2)
值域:
先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
函数图象知识归纳
(1)定义在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.
(2)画法
A、描点法
B、图象变换法常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
区间的概念
(1)区间的分类开区间、闭区间、半开半闭区间
(2)无穷区间(3)区间的数轴表示.
映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应fAB为从集合A到集合B的一个映射。
记作fA→B
分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
二.函数的性质
函数的单调性(局部性质)
(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意函数的单调性是函数的局部性质;
(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A)定义法
○1任取x1,x2∈D,且x1
○2作差f(x1)-f(x2);
○3变形(通常是因式分解和配方);
○4定号(即判断差f(x1)-f(x2)的正负);
○5下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律“同增异减”
注意函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.
函数的奇偶性(整体性质)
(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.
(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定.
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有
1)凑配法
2)待定系数法
3)换元法
4)消参法
10.函数最大(小)值(定义见课本p36页)
○1利用二次函数的性质(配方法)求函数的最大(小)值
○2利用图象求函数的最大(小)值
○3利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题
求下列函数的定义域⑴⑵
设函数的定义域为,则函数的定义域为__
若函数的定义域为,则函数的定义域是
函数,若,则=
已知函数,求函数,的解析式
已知函数满足,则=。
设是R上的奇函数,且当时,,则当时=
在R上的解析式为
求下列函数的单调区间
⑴
(2)
10.判断函数的单调性并证明你的结论.
1设函数判断它的奇偶性并且求证.
三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
积化和差2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgB=sin(A+B)/sinAsinB
-ctgA+ctgB=sin(A+B)/sinAsin
集合与函数概念一,集合有关概念
1,集合的含义:
某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2,集合的中元素的三个特性:
元素的确定性;元素的互异性;元素的无序性说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3,集合的表示:
{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:
a={我校的篮球队员},b={1,2,3,4,5}
集合的表示方法:
列举法与描述法.
注意啊:
常用数集及其记法:
非负整数集(即自然数集)记作:
n
正整数集n*或n+整数集z有理数集q实数集r
关于"属于"的概念集合的元素通常用小写的拉丁字母表示,如:
a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a(a
列举法:
把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:
将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:
例:
{不是直角三角形的三角形}
②数学式子描述法:
例:
不等式x-3]2的解集是{x(r|x-3]2}或{x|x-3]2}
4,集合的分类:
有限集含有有限个元素的集合
无限集含有无限个元素的集合
空集不含任何元素的集合例:
{x|x2=-5}
二,集合间的基本关系
"包含"关系—子集注意:
有两种可能
(1)a是b的一部分,;
(2)a与b是同一集合.
反之:
集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
"相等"关系(5≥5,且5≤5,则5=5)
实例:
设a={x|x2-1=0}b={-1,1}"元素相同"
结论:
对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:
a=b
①任何一个集合是它本身的子集.a(a
②真子集:
如果a(b,且a(b那就说集合a是集合b的真子集,记作ab(或ba)
③如果a(b,b(c,那么a(c
④如果a(b同时b(a那么a=b
不含任何元素的集合叫做空集,记为φ
规定:
空集是任何集合的子集,空集是任何非空集合的真子集.
三,集合的运算
交集的定义:
一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.
记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.
2,并集的定义:
一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:
a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.
3,交集与并集的性质:
a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,a∪φ=a,a∪b=b∪a.
4,全集与补集
(1)补集:
设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
记作:
csa即csa={x(x(s且x(a}
(2)全集:
如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.
(3)性质:
⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u
数学必修1
集合
(1)集合的含义与表示①通过实例,了解集合的含义,体会元素与集合的“属于”关系。
②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
函数概念与基本初等函数I
(约32课时)
(1)函数①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)指数函数①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
③知道指数函数与对数函数互为反函数(a>0,a≠1)。
(4)幂函数 通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
(5)函数与方程①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
积化和差2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgB=sin(A+B)/sinAsinB
-ctgA+ctgB=sin(A+B)/sinAsin
集合与函数概念一,集合有关概念
1,集合的含义:
某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2,集合的中元素的三个特性:
元素的确定性;元素的互异性;元素的无序性说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3,集合的表示:
{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:
a={我校的篮球队员},b={1,2,3,4,5}
集合的表示方法:
列举法与描述法.
注意啊:
常用数集及其记法:
非负整数集(即自然数集)记作:
n
正整数集n*或n+整数集z有理数集q实数集r
关于"属于"的概念集合的元素通常用小写的拉丁字母表示,如:
a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a(a
列举法:
把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:
将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:
例:
{不是直角三角形的三角形}
②数学式子描述法:
例:
不等式x-3]2的解集是{x(r|x-3]2}或{x|x-3]2}
4,集合的分类:
有限集含有有限个元素的集合
无限集含有无限个元素的集合
空集不含任何元素的集合例:
{x|x2=-5}
二,集合间的基本关系
"包含"关系—子集注意:
有两种可能
(1)a是b的一部分,;
(2)a与b是同一集合.
反之:
集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
"相等"关系(5≥5,且5≤5,则5=5)
实例:
设a={x|x2-1=0}b={-1,1}"元素相同"
结论:
对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合