最新小学16年级数学公式大全 2.docx

上传人:b****5 文档编号:3630255 上传时间:2022-11-24 格式:DOCX 页数:12 大小:21.54KB
下载 相关 举报
最新小学16年级数学公式大全 2.docx_第1页
第1页 / 共12页
最新小学16年级数学公式大全 2.docx_第2页
第2页 / 共12页
最新小学16年级数学公式大全 2.docx_第3页
第3页 / 共12页
最新小学16年级数学公式大全 2.docx_第4页
第4页 / 共12页
最新小学16年级数学公式大全 2.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

最新小学16年级数学公式大全 2.docx

《最新小学16年级数学公式大全 2.docx》由会员分享,可在线阅读,更多相关《最新小学16年级数学公式大全 2.docx(12页珍藏版)》请在冰豆网上搜索。

最新小学16年级数学公式大全 2.docx

最新小学16年级数学公式大全2

小学数学代数、几何的初步知识

代数

一、用字母表示数

1、用字母表示数的意义和作用

用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

用字母表示数是代数的基本特点。

既简单明了,又能表达数量关系的一般规律。

2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

⑴常见的数量关系

①路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

s=vtv=s/tt=s/v

②总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bcb=a/cc=a/b

⑵运算定律和性质

加法交换律:

a+b=b+a

加法结合律:

(a+b)+c=a+(b+c)

乘法交换律:

ab=ba

乘法结合律:

(ab)c=a(bc)

乘法分配律:

(a+b)c=ac+bc

减法的性质:

a-(b+c)=a-b-c

⑶用字母表示几何形体的公式

①长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

c=2(a+b)s=ab

②正方形的边长a用表示,周长用c表示,面积用s表示。

c=4as=a²

③平行四边形的底a用表示,高用h表示,面积用s表示。

s=ah

④三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2

⑤梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

s=(a+b)h/2s=mh

⑥圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

c=∏d=2∏rs=∏r²

⑦扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

s=∏nr²/360

⑧长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

v=shs=2(ab+ah+bh)v=abh

⑨正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.

s=6a²v=a³

⑩圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.

s侧=ch

s表=s侧+2s底v=sh

⑪圆锥的高用h表示,底面积用s表示,体积用v表示.

v=sh/3

3、用字母表示数的写法

①数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写;数与数相乘,乘号不能省略。

②当“1”与任何字母相乘时,“1”省略不写。

③数字和字母相乘时,将数字写在字母前面。

④在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

⑤用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

4、将数值代入式子求值

①把具体的数代入式子求值时,要注意书写格式:

先写出字母等于几,然后写出原式,再把数代入式子求值。

字母表示的是数,后面不写单位名称。

②同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

二、简易方程

1、等式:

表示相等关系的式子叫等式。

2、方程:

含有未知数的等式叫做方程。

判断一个式子是不是方程应具备两个条件:

一是含有未知数;二是等式。

所以,方程一定是等式,但等式不一定是方程。

方程和算术式不同。

算术式是一个式子,它由运算符号和已知数组成,它表示未知数。

方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

3、方程的解:

使方程左右两边相等的未知数的值,叫做方程的解。

4、解方程:

求方程的解的过程叫做解方程。

5、解方程的方法

⑴直接运用四则运算中各部分之间的关系去解。

如x-8=12

加数+加数=和一个加数=和-另一个加数

被减数-减数=差减数=被减数-差被减数=差+减数

被乘数×乘数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=除数×商

⑵先把含有未知数x的项看作一个数,然后再解。

如3x+20=41,先把3x看作一个数,然后再解。

⑶按四则运算顺序先计算,使方程变形,然后再解。

如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。

⑷利用运算定律或性质,使方程变形,然后再解。

如:

2.2x+7.8x=20,先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

四、列方程解应用题

在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先应将所求的未知数设为x。

1、列方程解应用题的意义

*用方程式去解答应用题求得应用题的未知量的方法。

2、列方程解答应用题的步骤

①弄清题意,确定未知数并用x表示;

②找出题中的数量之间的相等关系;

③列方程,解方程;

④检查或验算,写出答案。

3、列方程解应用题的方法

①综合法:

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

②分析法:

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4、列方程解应用题的范围

小学范围内常用方程解的应用题:

a一般应用题;

b和倍、差倍问题;

c几何形体的周长、面积、体积计算;

d分数、百分数应用题;

e比和比例应用题。

五、比和比例

1、比的意义和性质

⑴比的意义

两个数相除又叫做两个数的比。

“:

”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

⑵比的性质

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

⑶求比值和化简比

求比值的方法:

用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

⑷比例尺

图上距离:

实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:

在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

⑸按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:

首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2、比例的意义和性质

⑴比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

⑵比例的性质

在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

⑶解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3、正比例和反比例

⑴成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)

⑵成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

4、比和比例应用题

⑴在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。

⑵按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答

⑶正、反比例应用题的解题策略

①审题,找出题中相关联的两个量

②分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。

③设未知数,列比例式

④解比例式

⑤检验,写答语

几何

一、线和角

1、线

⑴直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

⑵射线

射线只有一个端点;长度无限。

⑶线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

⑷平行线

在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

⑸垂线

两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

2、角

⑴从一点引出两条射线,所组成的图形叫做角。

这个点叫做角的顶点,这两条射线叫做角的边。

⑵角的分类

①锐角:

小于90°的角叫做锐角。

②直角:

等于90°的角叫做直角。

③钝角:

大于90°而小于180°的角叫做钝角。

④平角:

角的两边成一条直线,这时所组成的角叫做平角。

平角180°。

⑤周角:

角的一边旋转一周,与另一边重合。

周角是360°。

二、平面图形

1、三角形

⑴特征:

由三条线段围成的图形;内角和是180度;三角形具有稳定性;从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,一个三角形有三条高。

⑵计算公式:

s=ah/2

⑶分类

①按角分

A、锐角三角形:

三个角都是锐角。

B、直角三角形:

有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

C、钝角三角形:

有一个角是钝角。

②按边分

A、不等边三角形:

三条边长度不相等。

B、等腰三角形:

有两条边长度相等;两个底角相等;有一条对称轴。

C、等边三角形:

三条边长度都相等;三个内角都是60度;有三条对称轴。

2、四边形

⑴特征:

①四边形是由四条线段围成的图形。

②任意四边形的内角和是360度。

③只有一组对边平行的四边形叫梯形。

④两组对边分别平行的四边形叫平行四边形,它容易变形。

长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。

⑵分类

①长方形

A、特征:

对边相等,4个角都是直角的四边形。

有两条对称轴。

B、计算公式:

c=2(a+b)s=ab

②正方形

A、特征:

四条边都相等,四个角都是直角的四边形。

有4条对称轴。

B、计算公式:

c=4as=a²

③平行四边形

A、特征:

两组对边分别平行的四边形;相对的边平行且相等;对角相等;相邻的两个角的度数之和为180度;平行四边形容易变形。

B、计算公式:

s=ah

④梯形

A、特征:

只有一组对边平行的四边形;中位线等于上下底和的一半;等腰梯形有一条对称轴。

B、计算公式:

s=(a+b)h/2=mh

3、圆

⑴圆的认识

圆是平面上的一种曲线图形。

圆中心的一点叫做圆心。

一般用字母o表示。

半径:

连接圆心和圆上任意一点的线段叫做半径。

一般用r表示。

在同一个圆里,有无数条半径,每条半径的长度都相等。

通过圆心并且两端都在圆上的线段叫做直径。

一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。

同圆或等圆的直径都相等

同一个圆里,直径等于两个半径的长度,即d=2r。

圆的大小由半径决定。

圆有无数条对称轴。

圆心确定圆的位置,半径确定圆的大小。

⑵圆的画法

把圆规的两脚分开,定好两脚间的距离(即半径);

把有针尖的一只脚固定在一点(即圆心)上;

把装有铅笔尖的一只脚旋转一周,就画出一个圆。

⑶圆的周长

围成圆的曲线的长叫做圆的周长。

把圆的周长和直径的比值叫做圆周率。

用字母∏表示。

⑷圆的面积:

圆所占平面的大小叫做圆的面积。

⑸计算公式:

d=2rr=d/2c=∏dc=2∏rs=∏r²

4、扇形

⑴扇形的认识

一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

(半圆与直径的组合也是扇形)。

显然,它是由圆周的一部分与它所对应的圆心角围成。

圆上AB两点之间的部分叫做弧,读作“弧AB”。

顶点在圆心的角叫做圆心角。

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。

扇形有一条对称轴,是轴对称图形。

⑵计算公式:

s=n∏r²/360

5、环形

⑴特征:

由两个半径不相等的同心圆相减而成,有无数条对称轴。

⑵计算公式:

s=∏(R²-r²)

6、轴对称图形

⑴特征

①如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

②线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等:

正方形有4条对称轴,长方形有2条对称轴。

等腰三角形有2条对称轴,等边三角形有3条对称轴。

等腰梯形有一条对称轴,圆有无数条对称轴。

菱形有4条对称轴,扇形有一条对称轴。

三、立体图形

(一)长方体

1、特征

六个面都是长方形(有时有两个相对的面是正方形)。

相对的面面积相等,12条棱相对的4条棱长度相等。

有8个顶点。

相交于一个顶点的三条棱的长度分别叫做长、宽、高。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

把长方体放在桌面上,最多只能看到三个面。

长方体或者正方体6个面的总面积,叫做它的表面积。

2、计算公式:

s=2(ab+ah+bh)V=shV=abh

(二)正方体

1、特征

六个面都是正方形

六个面的面积相等

12条棱,棱长都相等

有8个顶点

正方体可以看作特殊的长方体

2、计算公式:

S表=6a²v=a³

(三)圆柱

1、圆柱的认识

圆柱的上下两个面叫做底面。

圆柱有一个曲面叫做侧面。

圆柱两个底面之间的距离叫做高。

进一法:

实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。

这种取近似值的方法叫做进一法。

2、计算公式:

s侧=chs表=s侧+s底×2v=sh/3

(四)圆锥

1、圆锥的认识

圆锥的底面是个圆,圆锥的侧面是个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

测量圆锥的高:

先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。

把圆锥的侧面展开得到一个扇形。

2、计算公式:

v=sh/3

(五)球

1、认识

球的表面是一个曲面,这个曲面叫做球面。

球和圆类似,也有一个球心,用O表示。

从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。

通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。

2、计算公式:

d=2r

四、周长和面积

1、平面图形一周的长度叫做周长。

2、平面图形或物体表面的大小叫做面积。

3、常见图形的周长和面积计算公式

小学数学图形计算公式

1、正方形(C:

周长S:

面积a:

边长)

周长=边长×4C=4a

面积=边长×边长S=a×a

2、正方体(V:

体积a:

棱长)

表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3、长方形(C:

周长S:

面积a:

边长)

周长=(长+宽)×2C=2(a+b)

面积=长×宽S=ab

4、长方体(V:

体积s:

面积a:

长b:

宽h:

高)

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

(2)体积=长×宽×高V=abh

5、三角形(s:

面积a:

底h:

高)

面积=底×高÷2s=ah÷2

三角形高=面积×2÷底三角形底=面积×2÷高

6、平行四边形(s:

面积a:

底h:

高)

面积=底×高s=ah

7、梯形(s:

面积a:

上底b:

下底h:

高)

面积=(上底+下底)×高÷2s=(a+b)×h÷2

8、圆形(S:

面积C:

周长лd=直径r=半径)

(1)周长=直径×л=2×л×半径C=лd=2лr

(2)面积=半径×半径×л

9、圆柱体(v:

体积h:

高s:

底面积r:

底面半径c:

底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd)

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10、圆锥体(v:

体积h:

高s:

底面积r:

底面半径)

体积=底面积×高÷3

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职业技术培训

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1