Vector control motor.docx

上传人:b****5 文档编号:3274820 上传时间:2022-11-21 格式:DOCX 页数:44 大小:217.68KB
下载 相关 举报
Vector control motor.docx_第1页
第1页 / 共44页
Vector control motor.docx_第2页
第2页 / 共44页
Vector control motor.docx_第3页
第3页 / 共44页
Vector control motor.docx_第4页
第4页 / 共44页
Vector control motor.docx_第5页
第5页 / 共44页
点击查看更多>>
下载资源
资源描述

Vector control motor.docx

《Vector control motor.docx》由会员分享,可在线阅读,更多相关《Vector control motor.docx(44页珍藏版)》请在冰豆网上搜索。

Vector control motor.docx

Vectorcontrolmotor

Vectorcontrol,alsocalled field-orientedcontrol (FOC),isa variable-frequencydrive (VFD)controlmethodwherethe stator currentsofa three-phase ACelectricmotor areidentifiedastwoorthogonalcomponentsthatcanbevisualizedwithavector.Onecomponentdefinesthemagneticfluxofthemotor,theotherthetorque.Thecontrolsystemofthedrivecalculatesfromthefluxandtorquereferencesgivenbythedrive'sspeedcontrolthecorrespondingcurrentcomponentreferences.Typically proportional-integral(PI)controllers areusedtokeepthemeasuredcurrentcomponentsattheirreferencevalues.The pulse-widthmodulation ofthevariable-frequencydrivedefinesthe transistor switchingaccordingtothestatorvoltagereferencesthataretheoutputofthePIcurrentcontrollers.[1]

FOCisusedtocontrolthe AC synchronous and inductionmotors.[2] Itwasoriginallydevelopedforhigh-performancemotorapplicationsthatarerequiredtooperatesmoothlyoverthefull speed range,generatefull torque atzerospeed,andhavehighdynamicperformanceincludingfast acceleration anddeceleration.However,itisbecomingincreasinglyattractiveforlowerperformanceapplicationsaswellduetoFOC'smotorsize,costand powerconsumption reductionsuperiority.[3][4] Itisexpectedthatwithincreasingcomputationalpowerofthemicroprocessorsitwilleventuallynearlyuniversallydisplacesingle-variable scalar volts-per-Hertz (V/f)control.[5][6]

Contents

  [hide] 

∙1 Developmenthistory

∙2 Technicaloverview

∙3 Applicationrecap

∙4 Seealso

∙5 References

Developmenthistory[edit]

BlockdiagramfromBlaschke's1971USpatentapplication

TechnicalUniversityDarmstadt'sK.HasseandSiemens'F.Blaschkepioneered vector controlofACmotorsstartingin1968andintheearly1970s,Hasseintermsofproposingindirectvectorcontrol,Blaschkeintermsofproposingdirectvectorcontrol.[7][8] TechnicalUniversityBraunschweig'sWernerLeonhardfurtherdevelopedFOCtechniquesandwasinstrumentalinopeningupopportunitiesfor ACdrives tobeacompetitivealternativeto DCdrives.[9][10]

Yetitwasnotuntilafterthecommercializationof microprocessors,thatisintheearly1980s,thatgeneralpurposeACdrivesbecameavailable.[11][12] BarrierstouseofFOCforACdriveapplicationsincludedhighercostandcomplexityandlowermaintainabilitycomparedtoDCdrives,FOChavinguntilthenrequiredmanyelectroniccomponentsintermsofsensors,amplifiersandsoon.[13]

The Parktransformation haslongbeenwidelyusedintheanalysisandstudyof synchronous andinductionmachines.ThetransformationisbyfarthesinglemostimportantconceptneededforanunderstandingofhowFOCworks,theconcepthavingbeenfirstconceptualizedina1929paperauthoredby RobertH.Park.[14] Park'spaperwasrankedsecondmostimportantintermsofimpactfromamongallpowerengineeringrelatedpaperseverpublishedinthetwentiethcentury.ThenoveltyofPark'sworkinvolveshisabilitytotransformanyrelatedmachine'slinear differentialequationsetfromonewithtimevaryingcoefficientstoanotherwithtime invariant coefficients.[15]

Technicaloverview[edit]

OverviewofkeycompetingVFDcontrolplatforms:

VFD,withsensororsensorless

Scalarcontrol

V/f(VoltsperHertz)control

Vectorcontrol

DTC(Directtorquecontrol)

DSC(Directself-control)

SVC(Spacevectormodulation)

FOC(Field-orientedcontrol)

DirectFOC

IndirectFOC

SignalFlowGraph(SFG)forInductionMotor

SFGEquations

(d,q)CoordinateSystemSuperimposedonThree-PhaseInductionMotor[16]

SimplifiedIndirectFOCBlockDiagram [3] [17][18]

SimplifiedDirectFOCBlockDiagram [19]

SensorlessFOCBlockDiagram [20][21]

WhiletheanalysisofACdrivecontrolscanbetechnicallyquiteinvolved("Seealso"section),suchanalysisinvariablystartswithmodelingofthedrive-motorcircuitinvolvedalongthelinesofaccompanying signalflowgraph andequations.[20]

Invectorcontrol,anACinductionorsynchronousmotoriscontrolledunderalloperatingconditionslikeaseparately excited DCmotor.[22] Thatis,theACmotorbehaveslikeaDCmotorinwhichthefieldfluxlinkage and armature fluxlinkagecreatedbytherespectivefieldandarmature(ortorquecomponent)currentsare orthogonally alignedsuchthat,whentorqueiscontrolled,thefieldfluxlinkageisnotaffected,henceenablingdynamictorqueresponse.

Vectorcontrolaccordinglygeneratesathree-phase PWM motorvoltageoutputderivedfroma complexvoltagevectortocontrolacomplexcurrentvectorderivedfrommotor'sthree-phasemotorstatorcurrentinputthrough projections or rotations backandforthbetweenthethree-phasespeedandtimedependentsystemandthesevectors'rotatingreference-frametwo-coordinate timeinvariantsystem.[23]

Suchcomplex stator motorcurrentspacevectorcanbedefinedina(d,q)coordinatesystemwithorthogonalcomponentsalongd(direct)andq(quadrature)axessuchthatfieldfluxlinkagecomponentofcurrentisalignedalongthedaxisandtorquecomponentofcurrentisalignedalongtheqaxis.[22] Theinductionmotor's(d,q)coordinatesystemcanbesuperimposedtothemotor'sinstantaneous(a,b,c)three-phase sinusoidal systemasshowninaccompanyingimage(phasesa&bnotshownforclarity).Componentsofthe(d,q)systemcurrentvector,allowconventionalcontrolsuchasproportionalandintegral,or PI,control,aswithaDCmotor.

Projectionsassociatedwiththe(d,q)coordinatesystemtypicallyinvolve:

[20][23][24]

∙Forwardprojectionfrominstantaneouscurrentsto(a,b,c)complex stator currentspacevectorrepresentationofthethree-phase sinusoidal system.

∙Forwardthree-to-twophase,(a,b,c)-to-(

)projectionusingthe Clarke transformation.Vectorcontrolimplementationsusuallyassumeungroundedmotorwithbalancedthree-phasecurrentssuchthatonlytwomotorcurrentphasesneedtobesensed.Also,backwardtwo-to-threephase,(

)-to-(a,b,c)projectionusesspacevectorPWMmodulatororinverseClarketransformationandoneoftheotherPWMmodulators.

∙Forwardandbackwardtwo-to-twophase,(

)-to-(d,q)and(d,q)-to-(

)projectionsusingtheParkandinverseParktransformations,respectively.

However,itisnotuncommonforsourcestousethree-to-two,(a,b,c)-to-(d,q)andinverseprojections.

While(d,q)coordinatesystemrotationcanarbitrarilybesettoanyspeed,therearethreepreferredspeedsorreferenceframes:

[16]

∙Stationaryreferenceframewhere(d,q)coordinatesystemdoesnotrotate;

∙Synchronouslyrotatingreferenceframewhere(d,q)coordinatesystemrotatesatsynchronousspeed;

∙Rotorreferenceframewhere(d,q)coordinatesystemrotatesatrotorspeed.

Decoupled torqueandfieldcurrentscanthusbederivedfromrawstatorcurrentinputsforcontrolalgorithmdevelopment.[25]

WhereasmagneticfieldandtorquecomponentsinDCmotorscanbeoperatedrelativelysimplybyseparatelycontrollingtherespectivefieldandarmaturecurrents,economicalcontrolofACmotorsinvariablespeedapplicationhasrequireddevelopmentofmicroprocessor-basedcontrols[25] withallACdrivesnowusingpowerfulDSP(digitalsignalprocessing)technology.[26]

Inverterscanbeimplementedaseither open-loop sensorlessorclosed-loopFOC,thekeylimitationofopen-loopoperationbeingmimimumspeedpossibleat100%torque,namely,about0.8 Hzcomparedtostandstillforclosed-loopoperation.[9]

Therearetwovectorcontrolmethods,director feedback vectorcontrol(DFOC)andindirectorfeedforward vectorcontrol(IFOC),IFOCbeingmorecommonlyusedbecauseinclosed-loopmodesuchdrivesmoreeasilyoperatethroughoutthespeedrangefromzerospeedtohigh-speedfield-weakening.[27] InDFOC,fluxmagnitudeandanglefeedbacksignalsaredirectlycalculatedusingso-calledvoltageorcurrentmodels.InIFOC,fluxspaceanglefeedforwardandfluxmagnitudesignalsfirstmeasurestatorcurrentsand rotor speedforthenderivingfluxspaceangleproperbysummingtherotoranglecorrespondingtotherotorspeedandthecalculatedreferencevalueof slip anglecorrespondingtotheslipfrequency.[28][29]

Sensorlesscontrol(seeSensorlessFOCBlockDiagram)ofACdrivesisattractiveforcostandreliabilityconsiderations.Sensorlesscontrolrequiresderivationofrotorspeedinformationfrommeasuredstatorvoltageandcurrentsincombinationwithopen-loopestimatorsorclosed-loopobservers.[20][21]

Applicationrecap[edit]

1.Statorphasecurrentsaremeasured,convertedtocomplexspacevectorin(a,b,c)coordinatesystem.

2.Currentvectorisconvertedto(

 

)coordinatesystem. Transformedtoacoordinatesystem rotatingin rotor referenceframe,rotorpositionbeingderivedby integrating thespeedbymeansof speedmeasurement sensor.

3.Rotor fluxlinkage vectorisestimatedbymultiplyingthestatorcurrentvectorwithmagnetizinginductanceLm and low-passfiltering theresultwiththerotorno-load timeconstant Lr/Rr,namely,therotorinductancetorotorresistanceratio.

4.Currentvectorisconvertedto(d,q)coordinatesystem.

5.d-axiscomponentofthestatorcurrentvectorisusedtocontroltherotorfluxlinkageandtheimaginaryq-axiscomponentisusedtocontrolthemotortorque.WhilePIcontrollerscanbeusedtocontrolthesecurrents, bang-bang typecurrentcontrolprovidesbetterdynamicperformance.

6.PIcontrollersprovide(d,q)coordinatevoltagecomponents.Adecouplingtermissometimesaddedtothecontrolleroutputtoimprovecontrolperformancetomitigatecrosscouplingorbigandrapidchangesinspeed,currentandfluxlinkage.PI-controlleralsosometimesneed low-passfiltering attheinp

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1