高考最新普通高等学校招生全国统一考试江西卷.docx
《高考最新普通高等学校招生全国统一考试江西卷.docx》由会员分享,可在线阅读,更多相关《高考最新普通高等学校招生全国统一考试江西卷.docx(37页珍藏版)》请在冰豆网上搜索。
高考最新普通高等学校招生全国统一考试江西卷
2018高等学校全国统一数学文试题(江西卷)
一、选择题:
本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合
,
,则
等于( )
A.
B.
C.
D.
2.函数
的最小正周期为( )
A.
B.
C.
D.
3.在各项均不为零的等差数列
中,若
,则
( )
A.
B.
C.
D.
4.下列四个条件中,
是
的必要不充分条件的是( )
A.
,
B.
,
C.
为双曲线,
D.
,
5.对于
上可导的任意函数
,若满足
,则必有( )
A.
B.
C.
D.
6.若不等式
对一切
成立,则
的最小值为( )
A.
B.
C.
D.
7.在
的二项展开式中,若常数项为
,则
等于( )
A.
B.
C.
D.
8.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( )
A.
B.
C.
D.
9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( )
A.等腰四棱锥的腰与底面所成的角都相等
B.等腰四棱锥的侧面与底面所成的二面角都相等或互补
C.等腰四棱锥的底面四边形必存在外接圆
D.等腰四棱锥的各顶点必在同一球面上
10.已知等差数列
的前
项和为
,若
,且
三点共线(该直线不过点
),则
等于( )
A.100B.101C.200D.201
11.
为双曲线
的右支上一点,
,
分别是圆
和
上的点,则
的最大值为( )
A.
B.
C.
D.
12.某地一天内的气温
(单位:
℃)与时刻
(单位:
时)之间的关系如图
(1)所示,令
表示时间段
内的温差(即时间段
内最高温度与最低温度的差).
与
之间的函数关系用下列图象表示,则正确的图象大致是( )
第
卷
二、填空题:
本大题4小题,每小题4分,共16分.请把答案填在答题卡上.
13.已知向量
,
,则
的最大值为.
14.设
的反函数为
,若
,则
.
15.如图,已知正三棱柱
的底面边长为1,高为8,一质点自
点出发,沿着三棱柱的侧面绕行两周到达
点的最短路线的长为.
16.已知
为双曲线
的两个焦点,
为双曲线右支上异于顶点的任意一点,
为坐标原点.下面四个命题( )
A.
的内切圆的圆心必在直线
上;
B.
的内切圆的圆心必在直线
上;
C.
的内切圆的圆心必在直线
上;
D.
的内切圆必通过点
.
其中真命题的代号是(写出所有真命题的代号).
三、解答题:
本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知函数
在
与
时都取得极值.
(1)求
的值及函数
的单调区间;
(2)若对
,不等式
恒成立,求
的取值范围.
18.(本小题满分12分)
某商场举行抽奖促销活动,抽奖规则是:
从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:
甲摸一次,乙摸两次.求
(1)甲、乙两人都没有中奖的概率;
(2)甲、两人中至少有一人获二等奖的概率.
19.(本小题满分12分)
在锐角
中,角
所对的边分别为
,已知
,
(1)求
的值;
(2)若
,
,求
的值.
20.(本小题满分12分)
如图,已知三棱锥
的侧棱
两两垂直,且
,
,
是
的中点.
(1)求
点到面
的距离;
(2)求异面直线
与
所成的角;
(3)求二面角
的大小.
21.(本小题满分12分)
如图,椭圆
的右焦点为
,过点
的一动直线
绕点
转动,并且交椭圆于
两点,
为线段
的中点.
(1)求点
的轨迹
的方程;
(2)若在
的方程中,令
,
.
设轨迹
的最高点和最低点分别为
和
.当
为何值时,
为一个正三角形?
22.(本小题满分14分)
已知各项均为正数的数列
,满足:
,且
,
.
(1)求数列
的通项公式;
(2)设
,
,求
,并确定最小正整数
,使
为整数.
2018年普通高等学校招生全国统一考试(江西卷)
文科数学(编辑:
ahuazi)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:
1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:
如果时间A、B互斥,那么
如果时间A、B相互独立,那么
如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率
球的表面积公式
,其中R表示球的半径
球的体积公式
,其中R表示球的半径
一、选择题:
本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合
,
,则
等于(C )
A.
B.
C.
D.
解:
P={x|x1或x0},Q={x|x1}故选C
2.函数
的最小正周期为(B )
A.
B.
C.
D.
解:
T=
,故选B
3.在各项均不为零的等差数列
中,若
,则
( A )
A.
B.
C.
D.
解:
设公差为d,则an+1=an+d,an-1=an-d,由
可得2an-
=0,解得an=2(零解舍去),故
2×(2n-1)-4n=-2,故选A
4.下列四个条件中,
是
的必要不充分条件的是( D )
A.
,
B.
,
C.
为双曲线,
D.
,
解:
A.p不是q的充分条件,也不是必要条件;B.p是q的充要条件;C.p是q的充分条件,不是必要条件;D.正确
5.对于
上可导的任意函数
,若满足
,则必有(C )
A.
B.
C.
D.
解:
依题意,当x1时,f(x)0,函数f(x)在(1,+)上是增函数;当x1时,f(x)0,f(x)在(-,1)上是减函数,故f(x)当x=1时取得最小值,即有
f(0)f
(1),f
(2)f
(1),故选C
6.若不等式
对一切
成立,则
的最小值为( C )
A.
B.
C.
D.
解:
设f(x)=x2+ax+1,则对称轴为x=
若
,即a-1时,则f(x)在〔0,
〕上是减函数,应有f(
)0
-
x-1
若
0,即a0时,则f(x)在〔0,
〕上是增函数,应有f(0)=10恒成立,故a0
若0
,即-1a0,则应有f(
)=
恒成立,故-1a0
综上,有-
a故选C
7.在
的二项展开式中,若常数项为
,则
等于( B )
A.
B.
C.
D.
解:
,由
解得n=6故选B
8.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为(A )
A.
B.
C.
D.
解:
依题意,各层次数量之比为4321,即红球抽4个,蓝球抽3个,白球抽2个,黄球抽一个,故选A
9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( B )
A.等腰四棱锥的腰与底面所成的角都相等
B.等腰四棱锥的侧面与底面所成的二面角都相等或互补
C.等腰四棱锥的底面四边形必存在外接圆
D.等腰四棱锥的各顶点必在同一球面上
解:
因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C正确,且在它的高上必能找到一点到各个顶点的距离相等,故D正确,B不正确,如底面是一个等腰梯形时结论就不成立。
故选B
10.已知等差数列
的前
项和为
,若
,且
三点共线(该直线不过点
),则
等于(A )
A.100B.101C.200D.201
解:
依题意,a1+a200=1,故选A
11.
为双曲线
的右支上一点,
,
分别是圆
和
上的点,则
的最大值为( D )
A.
B.
C.
D.
解:
设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时
|PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9故选B
12.某地一天内的气温
(单位:
℃)与时刻
(单位:
时)之间的关系如图
(1)所示,令
表示时间段
内的温差(即时间段
内最高温度与最低温度的差).
与
之间的函数关系用下列图象表示,则正确的图象大致是(D )
解:
结合图象及函数的意义可得。
第
卷
二、填空题:
本大题4小题,每小题4分,共16分.请把答案填在答题卡上.
13.已知向量
,
,则
的最大值为
解:
=|sin-cos|=
|sin(-
)|
|
14.设
的反函数为
,若
,则
2.
解:
f-1(x)=3x-6故〔f-1(m)+6〕〔f-1(x)+6〕=3m3n=3m+n=27
m+n=3f(m+n)=log3(3+6)=2
15.如图,已知正三棱柱
的底面边长为1,高为8,一质点自
点出发,沿着三棱柱的侧面绕行两周到达
点的最短路线的长为10.
解:
将正三棱柱
沿侧棱CC1展开,
其侧面展开图如图所示,由图中路线可得结论。
16.已知
为双曲线
的两个焦点,
为双曲线右支上异于顶点的任意一点,
为坐标原点.下面四个命题( )
A.
的内切圆的圆心必在直线
上;
B.
的内切圆的圆心必在直线
上;
C.
的内切圆的圆心必在直线
上;
D.
的内切圆必通过点
.
其中真命题的代号是(A)、(D)(写出所有真命题的代号).
解:
设
的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,则|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,又点P