模电三角波正弦波课程设计综述.docx

上传人:b****6 文档编号:3027911 上传时间:2022-11-17 格式:DOCX 页数:18 大小:322.36KB
下载 相关 举报
模电三角波正弦波课程设计综述.docx_第1页
第1页 / 共18页
模电三角波正弦波课程设计综述.docx_第2页
第2页 / 共18页
模电三角波正弦波课程设计综述.docx_第3页
第3页 / 共18页
模电三角波正弦波课程设计综述.docx_第4页
第4页 / 共18页
模电三角波正弦波课程设计综述.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

模电三角波正弦波课程设计综述.docx

《模电三角波正弦波课程设计综述.docx》由会员分享,可在线阅读,更多相关《模电三角波正弦波课程设计综述.docx(18页珍藏版)》请在冰豆网上搜索。

模电三角波正弦波课程设计综述.docx

模电三角波正弦波课程设计综述

学号:

0120828460130

课程设计

 

题目

方波三角波正弦波函数发生器设计

学院

国际教育学院

专业

通信工程

班级

通信gj0801

姓名

罗云月

指导教师

撒继铭

 

2011

1

23

课程设计任务书

学生姓名:

罗云月专业班级:

通信gj0801

指导教师:

撒继铭工作单位:

信息工程学院

题目:

方波-三角波-正弦波函数信号发生器

初始条件:

集成运放uA741,电阻,电容,可变电位器,NPN型晶体三极管,单刀双掷开关.电压为+8v的电源,电压为-8v的电源.电路仿真软件EWB等

 

要求完成的主要任务:

设计完成的电路要求输出方波,三角波,正弦波

(1)输出的频率范围为1~10HZ,10~100HZ,100~1000HZ

(2)输出的电压值方波峰峰值16v,三角波峰峰值4v,正弦波峰峰值大于1v

(3)波形特性,:

要求正弦波和三角波的非线性失真度较小

(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)

 

时间安排:

第19周:

理论讲解.地点:

鉴三202

第20周:

理论设计.仿真调试.撰写试验报告,准备答辩

第21周:

答辩

 

指导教师签名:

2011年1月11日

系主任(或责任教师)签名:

年月日

 

摘要

分析工作原理及作图……………………………………………………3

第一章方案的选择………………………………………………………………4

1.1各个方案的原理框图

1.2各个方案的比较及确定方案

第二章各部分电路设计…………………………………………………………(3)

2.1方波发生电路的工作原理………………………………………………………

2.2方波---三角波转换电路的工作原理……………………(3)

2.3三角波---正弦波转换电路的工作原理…………………(6)

2.4电路的参数选择及计算……………………………………(8)

第三章函数发生器的总电路图……………………………………………

(1)

第四章电路仿真…………………………………………………………………(11)

4.1方波---三角波发生电路的仿真……………………………(11)

4.2三角波---正弦波转换电路的仿真…………………………(12)

第五章电路的安装与调试………………………………………………………(13)

5.1方波---三角波发生电路的安装与调试……………………(13)

5.2三角波---正弦波转换电路的安装与调试…………………(13)

5.3总电路的安装与调试………………………………………(13)

5.4电路安装与调试中遇到的问题及分析解决方法…………(13)

第六章电路的实验结果…………………………………………………………(14)

6.1方波---三角波发生电路的实验结果………………………(14)

6.2三角波---正弦波转换电路的实验结果……………………(14)

6.3实测电路波形、误差分析及改进方法………………………(15)

第七章实验总结………………………………………………………………(17)

第八章仪器仪表明细清单………………………………………………………(18)

第九章参考文献…………………………………………………………………(19)

摘要

函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。

由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

第一章方案的选择

1采用集成片ICL8038做函数信号发生器

图一ICL8038原理图

ICL8038是一种集成度很高的芯片,只需要外加少量调整电路即可以获得完美的方波-三角波-正弦波的波形

2采用振荡电路获得正弦波,再由比较器获得方波,最后通过积分电路获得三角波

图二函数发生器原理一

3采用比较器和积分器分别获得方波和三角波,再用晶体三极管组成的差分放大电路做三角波到正弦波的转换.波形变换的原理是利用差分放大传输特性的非线性,传输特性曲线越对称,并且线性区间越窄越好.三角波的幅值应该接近晶体管的截止电压值

图三函数发生器原理二框图

以上的三种方案,其中方案一十分的简单,只需要购买一片ICL8038和少量电阻和电容即可.方案二和方案三,有一个共同之处是都需要搭建波形变换电路.理论上说,都是简单可行的.但是考虑到ICL8038的市场价格较高,因此抛弃第一种方案.但是方案二是使用RC桥式正弦波振荡器作为整个电路的基础,考虑到正弦振荡电路的稳定性,因此选择方案三做为最终的方案.

 

第二章各组成部分的工作原理

2.1方波发生电路的工作原理

 

图四方波—三角波产生电路

此电路由反相输入的滞回比较器和RC电路组成。

RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。

设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。

Uo通过R3对电容C正向充电,如图中实线箭头所示。

反相输入端电位n随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。

随后,Uo又通过R3对电容C反向充电,如图中虚线箭头所示。

Un随时间逐渐增长而减低,当t趋于无穷大时,Un趋于-Uz;但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。

上述过程周而复始,电路产生了自激振荡。

2.2方波---三角波转换电路的工作原理

图五迟滞比较器电压传输特性

图六三角波发生器的工作波形

工作原理如下:

若a点断开,运算发大器A1与R1、R2及R3、RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。

运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia,R1称为平衡电阻。

比较器的输出Uo1的高电平等于正电源电压+Vcc,低电平等于负电源电压-Vee(|+Vcc|=|-Vee|),当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee跳到高电平Vcc。

设Uo1=+Vcc,则

将上式整理,得比较器翻转的下门限单位Uia-为

若Uo1=-Vee,则比较器翻转的上门限电位Uia+为

比较器的门限宽度

由以上公式可得比较器的电压传输特性,如图五所示。

a点断开后,运放A2与R4、RP2、C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为

 

 

时,

时,

可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系图六所示。

a点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。

三角波的幅度为

方波-三角波的频率f为

  

由以上两式可以得到以下结论:

1.电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。

若要求输出频率的范围较宽,可用C2改变频率的范围,PR2实现频率微调。

2.方波的输出幅度应等于电源电压+Vcc。

三角波的输出幅度应不超过电源电压+Vcc。

电位器RP1可实现幅度微调,但会影响方波-三角波的频率。

2.3三角波---正弦波转换电路的工作原理

图七三角波——正弦波的变换电路主要由差分放大电路来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

分析表明,传输特性曲线的表达式为:

                     

式中  

——差分放大器的恒定电流;

——温度的电压当量,当室温为25oc时,UT≈26mV。

如果Uid为三角波,设表达式为

    

   

式中  Um——三角波的幅度;

  T——三角波的周期。

为使输出波形更接近正弦波,由图可见:

(1)传输特性曲线越对称,线性区越窄越好;

(2)三角波的幅度Um应正好使晶体管接近饱和区或截止区。

(3)图为实现三角波——正弦波变换的电路。

其中Rp1调节三角波的幅度,Rp2调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。

电容C1,C2,C3为隔直电容,C4为滤波电容,以滤除谐波分量,改善输出波形。

图八正弦波发生器的工作波形

2.4电路的参数选择及计算

1.方波-三角波中电容C1变化(关键性变化之一)

实物连线中,我们一开始很长时间出不来波形,后来将C2从10uf(理论时可出来波形)换成0.1uf时,顺利得出波形。

实际上,分析一下便知当C2=10uf时,频率很低,不容易在实际电路中实现。

 

3.2.三角-正弦波部分

计算比较器A1与积分器A2的元件计算如下。

,则

,取

,RP1为47KΩ的点位器。

区平衡电阻

由式(3-62)

时,取

,则

,取

,为100KΩ电位器。

时,取

以实现频率波段的转换,R4及RP2的取值不变。

取平衡电阻

三角波—>正弦波变换电路的参数选择原则是:

隔直电容C3、C4、C5要取得较大,因为输出频率很低,取

,滤波电容

视输出的波形而定,若含高次斜波成分较多,

可取得较小,

一般为几十皮法至0.1微法。

RE2=100欧与RP4=100欧姆相并联,以减小差分放大器的线性区。

差分放大器的几静态工作点可通过观测传输特性曲线,调整RP4及电阻R确定。

 

第三章函数发生器的总方案

图九函数发生器总设计图

 

第四章仿真结果

1.三角波-正弦波函数发生器波形

图十三角波-正弦波函数发生器波形

2.方波-三角波函数发生器波形

图十一方波-三角波函数发生器波形

第五章电路的安装与调试

5.1方波---三角波发生电路的安装与调试

1.按装方波——三角波产生电路

1.把两块741集成块插入面包板,注意布局;

2.分别把各电阻放入适当位置,尤其注意电位器的接法;

3.按图接线,注意直流源的正负及接地端。

2.调试方波——三角波产生电路

1.接入电源后,用示波器进行双踪观察;

2.调节RP1,使三角波的幅值满足指标要求;

3.调节RP2,微调波形的频率;

4.观察示波器,各指标达到要求后进行下一部按装。

5.2三角波---正弦波转换电路的安装与调试

1.按装三角波——正弦波变换电路

1.在面包板上接入差分放大电路,注意三极管的各管脚的接线;

2.搭生成直流源电路,注意R*的阻值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1