学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx

上传人:b****8 文档编号:30168654 上传时间:2023-08-05 格式:DOCX 页数:28 大小:135.59KB
下载 相关 举报
学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx_第1页
第1页 / 共28页
学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx_第2页
第2页 / 共28页
学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx_第3页
第3页 / 共28页
学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx_第4页
第4页 / 共28页
学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx

《学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx》由会员分享,可在线阅读,更多相关《学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx(28页珍藏版)》请在冰豆网上搜索。

学年高中数学 第3章函数的应用函数与方程同步精品学案 新人教A版必修1.docx

学年高中数学第3章函数的应用函数与方程同步精品学案新人教A版必修1

§3.1 函数与方程

1.函数零点的概念

对于函数y=f(x)(x∈D),我们把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.注意以下两点:

(1)方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.

(2)函数零点的求法:

代数法:

求方程f(x)=0的实数根;

几何法:

对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.

2.函数零点的判断

一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.我们不妨把这一结论称为零点存在性定理.

对函数零点存在性定理的理解

(1)并不是所有的函数都有零点,如函数y=

.

(2)函数y=f(x)如果满足:

①函数在区间[a,b]上的图象是连续不断的一条曲线,②f(a)·f(b)<0,则函数y=f(x)在区间(a,b)内有零点.

(3)对于有些函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号.如函数y=x2有零点x0=0,但显然函数值没有变号.但是,对于任意一个函数,相邻的两个零点之间所有的函数值保持同号.

(4)函数在区间[a,b]上的图象是连续不断的一条曲线,且在区间(a,b)上单调,若f(a)·f(b)<0,则函数y=f(x)在(a,b)内有且只有一个零点.

但要注意:

如果函数y=f(x)在[a,b]上的图象是连续不断的曲线,且x0是函数在这个区间上的一个零点,却不一定有f(a)·f(b)<0.

3.二分法

所谓二分法,就是通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法.

用二分法求函数零点近似值的注意点

(1)在第一步中要使:

①区间[a,b]的长度尽量小;

②f(a)、f(b)的值比较容易计算,且f(a)·f(b)<0.

(2)根据函数的零点与相应方程根的关系,求函数的零点与求相应方程的根是等价的.对于求方程f(x)=g(x),可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即为方程f(x)=g(x)的根.

 

    题型一 判断零点所在区间

根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间是________.

x

-1

0

1

2

3

ex

0.37

1

2.72

7.39

20.09

x+2

1

2

3

4

5

解析 令f(x)=ex-x-2,由图表知f(-1)=0.37-1=-0.63<0,f(0)=1-2=-1<0,f

(1)=2.72-3=-0.28<0,f

(2)=7.39-4=3.39>0,f(3)=20.09-5=15.09>0,由于f

(1)·f

(2)<0,所以根所在的区间为(1,2).

答案 (1,2)

点评 解题的关键是ex与x+2差的符号,构造函数f(x)=ex-x-2,将求方程ex-x-2=0的根所在的区间转化为求函数的零点问题,通过函数零点的判断使问题获解.

 

     题型二 判断零点个数

定义在R上的奇函数f(x)满足:

当x>0时,f(x)=2008x+log2008x,则函数f(x)的零点的个数为(  )

A.1    B.2    C.3    D.2006

解析 因为函数f(x)为R上的奇函数,所以f(0)=0,

因为log2008

=-1,2008

>1,

所以f

=2008

+log2008

>0,

所以,当x>0时,f(x)=2008x+log2008x,

函数在区间

内存在零点,

又根据单调函数的定义可证明f(x)在(0,+∞)上为增函数,因此在(0,+∞)内有且仅有一个零点.

根据对称性可知函数在(-∞,0)内有且仅有一个零点,从而函数在R上零点的个数为3,故选C.

答案 C

点评 认识函数的性质是问题获解的关键,奇偶性保证函数的对称性,换句话说,有奇偶性的函数的零点(除原点外)是成对出现的.注意到函数为奇函数且在原点有定义,因此有f(0)=0.其次是函数的单调性,保证了函数零点在单调区间内的唯一性,当然零点的判定方法也是问题获解不可或缺的部分.

 

   题型三 用二分法求方程的近似解

求方程x2=2x+1的一个近似解(精确度0.1).

解 设f(x)=x2-2x-1.

∵f

(2)=-1<0,f(3)=2>0,

∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.

取2与3的平均数2.5,∵f(2.5)=0.25>0,

∴2

再取2与2.5的平均数2.25,

∵f(2.25)=-0.4375<0,∴2.25

再取2.25与2.5的平均数为2.375,

f(2.375)=-0.1094<0,

∴2.375

f(2.4375)=0.0664>0.

∵|2.375-2.4375|=0.0625<0.1,

∴方程x2=2x+1的一个精确度为0.1的近似解可取为2.4375.

点评 对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照二分法求函数零点近似值的步骤求之.

函数f(x)=x+

的零点个数为(  )

A.0    B.1    C.2    D.3

错解 因为f(-1)=-2,f

(1)=2,且x<0时,f(x)<0,x>0时,f(x)>0,所以y=f(x)有一个零点,故选B.

错因分析 函数的定义域决定了函数的一切性质,分析函数的有关问题时必须先求定义域.通过作图可知函数f(x)=x+

的图象不是连续不断的,因而零点存在性定理不能使用.

正解 函数的定义域为x∈R,且x≠0,当x>0时,f(x)>0,当x<0时,f(x)<0,所以函数没有零点,故选A.

本节在高考中充分地体现了函数与方程的思想,即在研究函数的零点时,利用图象来研究函数的零点或方程的根.

1.(山东高考)设函数y=x3与y=

x-2的图象的交点为(x0,y0),则x0所在的区间是(  )

                  

A.(0,1)B.(1,2)C.(2,3)D.(3,4)

解析 数形结合可知,交点横坐标在(1,2)内.

答案 B

2.(江苏高考)二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:

x

-3

-2

-1

0

1

2

3

4

y

6

0

-4

-6

-6

-4

0

6

则使ax2+bx+c>0成立的自变量x的取值范围是______________.

解析 由表中数据可知f(-2)=0,f(3)=0,因此函数的零点有两个是-2和3.这两个零点将x轴分成三个区间(-∞,-2],(-2,3],(3,+∞).在区间(-∞,-2]中取特殊值-3,表中数据有f(-3)=6>0,因此根据二次函数零点的性质得:

当x∈(-∞,-2)时,都有f(x)>0;同理可得:

当x∈(3,+∞)时也有f(x)>0.故使f(x)>0的自变量x的取值范围是x∈(-∞,-2)∪(3,+∞).

答案 (-∞,-2)∪(3,+∞)

1.下列函数中不能用二分法求零点的是(  )

                  

A.f(x)=3x-1B.f(x)=x3

C.f(x)=|x|D.f(x)=lnx

答案 C

解析 对于选项C而言,令|x|=0,得x=0,

即函数f(x)=|x|存在零点;

当x>0时,f(x)>0,当x<0时,f(x)>0,

∴f(x)=|x|的函数值非负,即函数f(x)=|x|有零点但零点两侧函数值同号,不能用二分法求零点.

2.若y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是(  )

A.若f(a)f(b)<0,不存在实数c∈(a,b),使得f(c)=0

B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b),使得f(c)=0

C.若f(a)f(b)>0,不存在实数c∈(a,b),使得f(c)=0

D.若f(a)f(b)>0,有可能存在实数c∈(a,b),使得f(c)=0

答案 D

解析 由零点存在性定理可知选项A不正确;

对于选项B可通过反例“f(x)=x(x-1)(x+1)在区间[-2,2]上满足f(-2)f

(2)<0,但其存在三个零点:

-1,0,1”推翻;

选项C可通过反例“f(x)=(x-1)(x+1)在区间[-2,2]上满足f(-2)f

(2)>0,但其存在两个零点:

-1,1”推翻.

3.方程2x+x=0在下列哪个区间内有实数根(  )

A.(-2,-1)B.(0,1)

C.(1,2)D.(-1,0)

答案 D

解析 设函数f(x)=2x+x,其对应的函数值如下表:

x

-2

-1

0

1

2

f(x)

1

3

6

由于f(-1)f(0)<0,所以方程2x+x=0在(-1,0)内有实数根.

4.函数f(x)=

的零点是__________.

答案 -2

解析 本题易认为零点有两个,即由x2-4=0求出x=±2,事实上x=2不在函数的定义域内.

5.设x0是方程lnx+x=4的根,且x0∈(k,k+1),求正整数k.

解 设f(x)=lnx+x-4,则函数f(x)=lnx+x-4在正数范围内是单调递增的,故函数f(x)=lnx+x-4仅有一个零点,

∵f

(1)=ln1+1-4<0,f

(2)=ln2+2-4<0,

f(3)=ln3+3-4>0,

∴f

(2)·f(3)<0,即k=2.

6.求方程2x3+3x-3=0的一个近似解(精确度0.1).

解 设f(x)=2x3+3x-3,经试算,f(0)=-3<0,f

(1)=2>0,所以函数在(0,1)内存在零点,即方程2x3+3x-3=0在(0,1)内有实数解,

取(0,1)的中点0.5,经计算f(0.5)<0,又f

(1)>0,所以方程2x3+3x-3=0在(0.5,1)内有解.

如此继续下去,得到方程的一个实数解所在的区间,如下表:

(a,b)

(a,b)的中点

f(a)

f(b)

f

(0,1)

0.5

f(0)<0

f

(1)>0

f(0.5)<0

(0.5,1)

0.75

f(0.5)<0

f

(1)>0

f(0.75)>0

(0.5,0.75)

0.625

f(0.5)<0

f(0.75)>0

f(0.625)<0

(0.625,0.75)

0.6875

f(0.625)<0

f(0.75)>0

f(0.6875)<0

因为|0.6875-0.75|=0.0625<0.1,

所以方程2x3+3x-3=0的精确度为0.1的一个近似解可取为0.6875.

7.如果函数f(x)=ax-x-a(a>0且a≠1)有两个不同的零点,求a的取值范围.

解 研究函数f(x)=ax-x-a(a>0且a≠1)的零点,即相当于研究方程ax=x+a的根.

(1)当a>1时,分别画出y=ax与y=x+a的图象,如图

(1)所示,

由于y=ax恒过M(0,1)点,直线y=x+a过点N(0,a),而a>1,所以点N在点M的上方,此时两者有两个交点,

即方程ax=x+a有两个根,函数f(x)=ax-x-a(a>0且a≠1)有两个不同的零点;

(2)当0

(2)所示,

指数函数y=ax在0

即方程ax=x+a仅有一个根,函数f(x)=ax-x-a(a>0且a≠1)有一个零点;

综上所述,a的取值范围是(1,+∞).

3.1.1 方程的根与函数的零点

学习目标

1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数.

2.理解函数的零点与方程根的关系.

3.掌握函数零点的存在性的判定方法.

自学导引

1.对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.

2.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.

3.方程f(x)=0有实数根

⇔函数y=f(x)的图象与x轴有交点

⇔函数y=f(x)有零点.

4.函数零点的存在性的判定方法:

如果函数y=f(x)在[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.

 

      一、求函数的零点

例1 求下列函数的零点:

(1)f(x)=-x2-2x+3;

(2)f(x)=x4-1;

(3)f(x)=x3-4x.

解 

(1)由于f(x)=-x2-2x+3=-(x+3)(x-1).

所以方程-x2-2x+3=0的两根是-3,1.

故函数的零点是-3,1.

(2)由于f(x)=x4-1=(x2+1)(x+1)(x-1),

所以方程x4-1=0的实数根是-1,1,

故函数的零点是-1,1.

(3)令f(x)=0,即x3-4x=0,

∴x(x2-4)=0,即x(x+2)(x-2)=0.

解得:

x1=0,x2=-2,x3=2,

所以函数f(x)=x3-4x有3个零点,分别是:

-2,0,2.

点评 求函数的零点,关键是准确求解方程的根,若是高次方程,要进行因式分解,分解成多个因式积的形式且方程的另一边为零,若是二次方程常用因式分解或求根公式求解.

变式迁移1 若函数f(x)=x2+ax+b的零点是2和-4,求a,b的值.

解 ∵2,-4是函数f(x)的零点.

∴f

(2)=0,f(-4)=0.

,解得

.

 

二、判断函数在某个区间内是否有零点

例2 

(1)函数f(x)=lnx-

的零点所在的大致区间是(  )

A.(1,2)       B.(2,3)

C.

和(3,4)D.(e,+∞)

(2)f(x)=lnx-

在x>0上共有________个零点.

分析 由题目可获取以下主要信息:

本例为判断函数零点所在区间问题,且在选项中给出了待确定的区间.解答本题可从已知区间求f(a)和f(b),判断是否有f(a)·f(b)<0,且注意该函数在定义域上为增函数.

答案 

(1)B 

(2)1

解析 

(1)∵f

(1)=-2<0,f

(2)=ln2-1<0,

∴在(1,2)内f(x)无零点,A不对;

又f(3)=ln3-

>0,∴f

(2)·f(3)<0,

∴f(x)在(2,3)内有一个零点.

(2)∵f(x)=lnx-

在x>0上是增函数,

故f(x)有且只有一个零点.

点评 这是一类非常基础且常见的问题,考查的是函数零点的判定方法,一般而言只需将区间端点代入函数求出函数值,进行符号判断即可得出结论,这类问题的难点往往是函数符号的判断,可运用函数的有关性质进行判断,同时也要注意该函数的单调性.

变式迁移2 方程x2-3x+1=0在区间(2,3)内根的个数为(  )

A.0    B.1    C.2    D.不确定

答案 B

解析 令f(x)=x2-3x+1,则f

(2)·f(3)<0,

∴(2,3)内仅有一个根.

 

三、已知函数零点的特征,求参数范围

例3 若函数f(x)=ax2-x-1仅有一个零点,求实数a的取值范围.

分析 由题目可获取以下主要信息:

已知函数f(x)零点特征,讨论函数表达式中字母的特征,解答本题可根据该字母对函数零点的影响入手,进行求解.

解 ①若a=0,则f(x)=-x-1,为一次函数,易知函数仅有一个零点;

②若a≠0,则函数f(x)为二次函数,若其只有一个零点,则方程ax2-x-1=0仅有一个实数根,

故判别式Δ=1+4a=0,a=-

.

综上,当a=0或a=-

时,函数仅有一个零点.

变式迁移3 已知在函数f(x)=mx2-3x+1的图象上其零点至少有一个在原点右侧,求实数m的范围.

解 

(1)当m=0时,f(0)=-3x+1,直线与x轴的交点为

,即函数的零点为

,在原点右侧,符合题意.

(1)

(2)当m≠0时,∵f(0)=1,

∴抛物线过点(0,1).

若m<0,f(x)的开口向下,如图

(1)所示.

二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.

(2)

若m>0,f(x)的开口向上,如图

(2)所示,要使函数的零点在原点右侧,当且仅当

9-4m≥0即可,解得0

综上所述,m的取值范围为

.

 

1.函数f(x)的零点就是方程f(x)=0的根,但不能将它们完全等同.如函数f(x)=x2-4x+4只有一个零点,但方程f(x)=0有两个相等实根.

2.并不是所有的函数都有零点,即使在区间[a,b]上有f(a)·f(b)<0,也只说明函数y=f(x)在(a,b)上至少有一个零点,但不一定唯一.反之,若f(a)·f(b)>0,也不说明函数y=f(x)在区间(a,b)上无零点,如二次函数y=x2-3x+2在[0,3]上满足f(0)·f(3)>0,但函数f(x)在区间(0,3)上有零点1和2.

3.函数的零点是实数而不是坐标轴上的点.

一、选择题

1.若函数f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下列说法中错误的是(  )

A.函数f(x)在(1,2)或[2,3)内有零点

B.函数f(x)在(3,5)内无零点

C.函数f(x)在(2,5)内有零点

D.函数f(x)在(2,4)内不一定有零点

答案 C

2.函数f(x)=log3x-8+2x的零点一定位于区间(  )

                  

A.(5,6)B.(3,4)C.(2,3)D.(1,2)

答案 B

解析 f(3)=log33-8+2×3=-1<0,

f(4)=log34-8+2×4=log34>0.

又f(x)在(0,+∞)上为增函数,

所以其零点一定位于区间(3,4).

3.函数f(x)=ax2+bx+c,若f

(1)>0,f

(2)<0,则f(x)在(1,2)上零点的个数为(  )

A.至多有一个B.有一个或两个

C.有且仅有一个D.一个也没有

答案 C

解析 若a=0,则f(x)=bx+c是一次函数,

由f

(1)·f

(2)<0得零点只有一个;

若a≠0,则f(x)=ax2+bx+c为二次函数,如有两个零点,则必有f

(1)·f

(2)>0,与已知矛盾.

4.已知f(x)是定义域为R的奇函数,且在(0,+∞)内的零点有1003个,则f(x)的零点的个数为(  )

A.1003B.1004C.2006D.2007

答案 D

解析 因为f(x)是奇函数,则f(0)=0,且在(0,+∞)内的零点有1003个,所以f(x)在(-∞,0)内的零点有1003个.

因此f(x)的零点共有1003+1003+1=2007个.

5.若函数y=f(x)在区间[0,4]上的图象是连续不断的曲线,且方程f(x)=0在(0,4)内仅有一个实数根,则f(0)·f(4)的值(  )

A.大于0B.小于0C.等于0D.无法判断

答案 D

解析 考查下列各种图象

上面各种函数y=f(x)在(0,4)内仅有一个零点,

但是

(1)中,f(0)·f(4)>0,

(2)中f(0)·f(4)<0,

(3)中f(0)·f(4)=0.

二、填空题

6.二次函数f(x)=ax2+bx+c中,a·c<0,则函数的零点有________个.

答案 2

解析 ∵Δ=b2-4ac>0,∴方程ax2+bx+c=0有两个不等实根,即函数f(x)有2个零点.

7.若函数f(x)=ax+b(a≠0)有一个零点是2,那么函数g(x)=bx2-ax的零点是__________.

答案 0,-

解析 由2a+b=0,得b=-2a,g(x)=bx2-ax

=-2ax2-ax,令g(x)=0,得x=0或x=-

∴g(x)=bx2-ax的零点为0,-

.

8.方程2ax2-x-1=0在(0,1)内恰有一个实根,则实数a的取值范围是____________.

答案 (1,+∞)

解析 令f(x)=2ax2-x-1,a=0时不符合题意;

a≠0且Δ=0时,解得a=-

此时方程为-

x2-x-1=0,也不合题意;

只能f(0)·f

(1)<0,解得a>1.

三、解答题

9.已知函数f(x)=3x-x2,问:

方程f(x)=0在区间[-1,0]内有没有实数解?

为什么?

分析 函数f(x)只要满足①f(-1)·f(0)<0;②在[-1,0]内连续,则f(x)=0在[-1,0]内必有实数解.

解 ∵f(-1)=3-1-(-1)2=-

<0,

f(0)=30-02=1>0.且函数f(x)=3x-x2的图象是连续曲线,∴f(x)在区间[-1,0]内有零点,

即f(x)=0在区间[-1,0]内有实数解.

10.若函数y=3x2-5x+a的两个零点分别为x1,x2,且有-2

解 

由已知得:

.

解得:

-12

3.1.2 用二分法求方程的近似解

学习目标

理解求方程近似解的二分法的基本思想,能够借助科学计算器用二分法求给定方程的满足一定精确度要求的近似解.

自学导引

1.二分法的概念

对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求方程的近似解.

2.用二分法求函数f(x)零点近似值的步骤(给定精确度ε)

(1)确定区间[a,b],使f(a)·f(b)<0.

(2)求区间(a,b)的中点,x1=

.

(3)计算f(x1).

①若f(x1)=0,则x1就是函数的零点;

②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1));

③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b)).

(4)继续实施上述步骤,直到区间[an,bn],函数的零点总位于区间[an,bn]上,当an和bn按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y=f(x)的近似零点,计算终止.这时函数y=f(x)的近似零点满足给定的精确度.

    一、能用二分法求零点的条件

例1 下列函数中能用二分法求零点的是(  )

答案 C

解析 在A中,函数无零点.在B和D中,函数有零点,但它们均是不变号零点,因此它们都不能用二分法来求零点.而在C中,函数图象是连续不断的,且图象与x轴有交点,并且其零点为变号零点,∴C中的函数能用二分法求其零点,故选C.

点评 判定一个函数能否用二分法求其零点的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 畜牧兽医

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1