中心孔打孔机的设计说明书综述.docx

上传人:b****8 文档编号:30153843 上传时间:2023-08-05 格式:DOCX 页数:32 大小:271.40KB
下载 相关 举报
中心孔打孔机的设计说明书综述.docx_第1页
第1页 / 共32页
中心孔打孔机的设计说明书综述.docx_第2页
第2页 / 共32页
中心孔打孔机的设计说明书综述.docx_第3页
第3页 / 共32页
中心孔打孔机的设计说明书综述.docx_第4页
第4页 / 共32页
中心孔打孔机的设计说明书综述.docx_第5页
第5页 / 共32页
点击查看更多>>
下载资源
资源描述

中心孔打孔机的设计说明书综述.docx

《中心孔打孔机的设计说明书综述.docx》由会员分享,可在线阅读,更多相关《中心孔打孔机的设计说明书综述.docx(32页珍藏版)》请在冰豆网上搜索。

中心孔打孔机的设计说明书综述.docx

中心孔打孔机的设计说明书综述

湘潭大学兴湘学院

专业课程设计说明书

题目中心孔打孔机的设计

 

专业机械设计制造及其自动化

班级机械6班

学号2012964406

姓名方海军

指导教师陈睿

完成日期2016年01月22日

 

摘要

 

中心打孔机,包括机壳、电机座、电机导轨和两个压杆,所述机壳内具有推块,机壳的顶部具有螺母,螺杆的一端通过螺母穿过机壳的顶部与推块相连,电机导轨与机壳固定连接,电机座通过电机导轨与机壳滑动连接,电机座内具有电机,电机的输出端连接有动力头;所述推块的下端具有滚轮,推块的中部两侧对称开有向上的两个斜槽,每个压杆的一端装有导向轮,导向轮在斜槽内滑动,每个压杆的中部通过回转销与机壳转动连接,每个压杆的另一端也均装有滚轮。

本实用新型的中心打孔机,不仅能快速的夹紧工件,三点快速夹紧,自动定心,实现自动打中心孔的目的。

中、长圆钢工件,加工时圆跳动大,一般须预先钻好中心孔后,再用顶尖定位一端进行车削加工。

本设计的目的在于设计一种专用的中心孔钻孔设备,可方便地对圆钢工件进行中心孔钻孔操作。

关键字:

中心钻孔;中心定位;带传动;花键传动

 

Abstract

Centerpunch,includingchassis,motor,rail,andtwocompressivebarinsidethecasinghasstatedpushblock,thetopofthechassiswithanut,oneendofthescrewnut,throughthetopofthechassisandblocksarelinkedtogether,motorguiderailandthecasingisfixed,themotorseatbymachineguiderailandslidecasingconnection,motorseatis,theoutputofthemotorconnectionpowerhead;Asdescribedinthelowerendoftheblockwitharoller,blockinthemiddleofthebilateralsymmetryrunsuptwochute,eachoneendofthepushrodisequippedwithguidewheel,guidewheelslidinginsidethechute,eachleverthroughbacktoresellersandchassisrotationconnection,inthemiddleofeachleverandontheothersideoftheroller.Centerpunchingmachineoftheutilitymodelnotonlycanfastclampingworkpiece,threefastclamping,automaticcentering,thepurposeofrealizingautomaticcentering.

Roundbeat,inthelongroundsteelworkpiece,processing,generallyaftergoodcenterholedrillinadvance,thenusingtoppositioningendcuttingprocessing.Thepurposeofthisdesignistodesignaspecialcenterholedrillingequipment,easilyonroundsteelworkpiececenterholedrillingoperation.

Keywords:

Centerhole;Centerpositioning;Tapedrive;Splinedrive

 

1前言.....................................................1

2中心孔打孔技术原理分析与方案选择....................2

2.1中心孔打孔技术要求分析..................................2

2.2打孔机基本原理分析与方案选择............................2

3系统总体方案设计.......................................4

3.1系统总体方案设计........................................4

3.2各功能模块方案设计......................................4

3.3确定总体布局............................................4

3.4执行机构分析及设计......................................5

4系统能量流设计.........................................6

4.1系统能量流设计..........................................6

4.2动力机的选型............................................6

5系统(带传动)设计...................................8

5.1确定传动比..............................................8

5.2计算功率................................................8

5.3选择带型...............................................8

5.4确定带轮基准直径........................................8

5.5确定中心距和带的基准长度................................9

5.6验算主动轮上的包角......................................9

5.7确定V带的根数.........................................9

5.8计算初拉力..............................................10

5.9计算作用在带轮轴上的力..................................10

5.10带轮材料及结构.........................................10

6轴的设计和校核.........................................12

6.1带轮传动轴的设计和校核..................................12

6.2花键轴的设计和校........................................12

7大带轮轴承的校核......................................16

8图例....................................................18

9结束语..................................................20

10参考文献..............................................21

1前言

中、长圆钢工件,因其尺寸长,加工时圆跳动大,一般需要预先钻好中心孔后,再用顶尖定位一端进行车削加工。

但受车床主轴内孔直径限制,当圆钢直径过大时,不能把其装入车床主轴内钻中心孔,对于这种情况通常钻中心孔的方法是把圆钢压放在镗床工作台的V型铁上定位,通过镗削加工而成。

用镗床钻中心孔,每次都需要装卸工件、找正中心以及主轴镗削进给等操作,效率比较低,且镗床价格贵,用它钻中心孔经济上不合理,因而有必要寻求一种经济实用的钻中心孔方法。

其实钻中心孔的过程比较简单,中心孔的转速基本可以固定,一般为500-800/min,因此可以设计一种功能简单、转速固定的设备钻中心孔。

2中心孔打孔技术原理分析与方案选择

2.1中心孔打孔技术要求分析

中心孔是轴类零件的基准,又是轴类零件的工艺基准,也是轴类零件的测量基准,所以中心孔对轴类零件的作用非常重要。

中心孔有:

60,、75、90度,其基准是60、75、90度的圆锥面。

同时也是轴类零件加工的工作面,所以,中心孔工作面质量的好坏,直接影响轴类零件的外圆质量。

在中心孔加工时,工艺方法主要从提高圆锥面质量和加工效率两个方面进行编制的,所以根据轴类零件的不同精度等级的要求和企业的生产现状,确定加工中心孔的工艺方法如下:

[1]

(1)零件标准公差等级要求为IT10—IT12时,其标准公差值在0.04—0.012mm之间。

中心孔的工艺为:

车外圆—车端面—钻中心孔。

(2)零件标准公差等级要求为IT8—IT9时,其标准公差值在0.014—0.036mm之间,中心孔的工艺为:

车外圆—车端面—钻中心孔—车端面—钻中心孔—热处理—研中心孔圆锥面。

(3)零件标准公差等级要求为IT6—IT7时,其标准公差值在0.006-0.012mm之间。

中心孔的工艺为:

粗车—热处理—(调质)—车外圆—车端面—钻中心孔—车端面—钻中心孔—粗研中心孔圆锥面—热处理—研中心孔圆锥面。

以上加工中心的工艺方法:

一方面确保零件两端中心孔轴线同轴度误差控制在公差要求范围之内,另一方面确保中心孔圆锥面的几何形状误差和表面粗糙度控制在允许的范围之内,达到提高加工效率,降低加工成本的目的。

加工中心孔圆锥面的加工方法有很多,最常见的加工方法为中心钻直接加工圆锥面。

因此可以设计一种功能简单、转速固定的设备钻中心孔。

2.2打孔机基本原理分析与方案选择

加工中圆钢有三爪卡盘实现夹紧定位。

圆钢工件成批地放在水平平台上,并可以在上面滚动。

平台上表面水平,这样每个工件的中心高度相对一致,每批工件在钻中心孔时水平平台的高度只需要调整一次即可。

又因工件成批放在水平平台上,更换工件只需要通过滚动实现,不必再使用吊装方法,装卸时间大为减低。

机械传动过程为:

电动机通过皮带轮把动力传递到装有钻头的花键轴上,操作驱动花键轴前后移动实现进给运动,完成中心孔钻削加工。

进给运动采用结构简单且容易实现的拨叉方式,手柄带动拨叉运动,然后通过螺栓、轴承等把进给力传递到花键轴上。

调整好钻夹头中心位置与三爪卡盘的中心重合,当卡盘夹紧圆钢工件的外圆后,中心钻的中心与圆钢工件的圆心就会一致,因而保证了工件中心孔的位置尺寸。

[2]

 

3系统总体方案设计,各功能模块方案设计,确定总体布局

3.1系统总体方案设计

此系统主要包括:

工件夹持装置,动力系统,进给装置三部分。

工件夹持装置主要为普通可调节高度的水平平台和一个三爪自定心卡盘;动力装置为电动机及皮带轮机构、可实现轴向运动的花键轴;进给装置为手柄带动拨叉拨动固定在花键轴上的轴套带动轴实现轴向进给运动。

3.2各功能模块方案设计

3.2.1工件夹持装置

初步选定卡盘为比较便宜的段圆柱型三爪卡盘,因为此打孔机主要针对大直径的工件,故根据GB/T4346.1—2002表2内短圆柱卡盘的参数选择卡盘直径最大D为630mm的卡盘。

3.2.2动力装置

因为工作制为断续周期工作制,载荷很小,故选择电动机为Y系列三相异步电动机,型号初定为Y801—4。

皮带传动为普通的V带传动。

3.2.3进给装置

轴向进给运动的实现要考虑到主轴高速转动的影响,需要特殊处理,是设计的关键。

初步设计为人工扳动手柄转动产生扭矩,经过销轴传递带动拨叉旋转,拨叉又拨动传动螺栓移动,传动螺栓与轴承套为螺纹连接,于是通过轴承套和轴承的传递,花键轴可以实现进给运动。

3.3确定总体布局

图1中心孔打孔机的结构

1.卡盘2.钻夹头3.花键轴4.手柄

5.大皮带轮6.小皮带轮7.电动机

总体布局图如图1所示。

包括定位夹紧部分和传动进给部分。

定位加紧部分由卡盘1和设备架体等组成,实现工件的定位夹紧。

传动进给部分由钻夹头2、花键轴3、大手柄4、大皮带轮5、小皮带轮6和电动机7组成,可以实现钻夹头的转动和轴向进给两种运动,完成钻中心孔加工。

3.4执行机构分析及设计

图2进给结构示意图

1.孔用弹性挡圈2.深沟球轴承3.轴承套4.轴用弹性挡圈

5.花键轴6.传动螺栓7.拨叉8.手柄

要让高速转动的花键轴5能够产生轴向运动,需要通过轴承2来实现。

因为钻中心孔的进给力不是很大,轴承2可以采用深沟球轴承,它能承受一定的轴向力,而且采用单个轴承传动能有效缩小结构体积,使设备简单轻便。

轴承的轴向定位利用两个弹性挡圈1和4,弹性挡圈承载性能不是很好,不过它们只是在中心钻头钻孔完毕退出工件时才承受较小的轴向力,工作进给力靠轴承套3和轴承2传递,所以不会因受力过大而受到损坏。

整个结构中的关键零件是轴承套3,它连接着轴承2和传动螺栓6,要把传动螺栓6的径向力传给轴承2产生轴向力,起到转换器的作用。

为了使深沟球轴承能够长期稳定的工作,不至于因为偏载而失效,拨叉7采取双拨叉结构,它们焊接在一个连接座上成为一体同步运动,共同推动轴承套3移动。

拨叉7与手柄8的连接结构为两个销轴座和两根销轴,它们都安装在设备整体结构的下部,可以有效节约空间及减少外界物品的干扰。

主轴进给运动的过程为:

人工扳动手柄8转动产生扭矩,经过销轴传递带动拨叉7旋转,拨叉7又拨动传动螺栓6移动,传动螺栓6与轴承套3为螺纹连接,于是通过轴承套3和轴承2的传递,花键轴5可以实现进给运动。

钻中心孔时中心孔的钻孔深度基本固定,不必采用标尺标记,只需加一限位块限制拨叉前进位置即可,可将一个螺母焊接在设备架体上,旋入一个内六角螺钉并顶到拨叉上限位,螺钉的伸出长度可以调节,能够满足多种规格尺寸的中心孔的加工要求。

[3]

4系统能量流设计,包括动力机的选型,传动系统设计

4.1系统能量流设计

电动机

带轮

花键轴

图3能量流布局框图

4.2动力机的选型

按工作条件和工作要求,选用一般用途的Y(IP44)系列三相异步电动机,它为卧式封闭结构。

4.2.1电动机容量

因为工作制为断续周期工作制,载荷很小,对输出功率没有特别要求,可以选择较小的输出功率。

所需电动机的功率为

(1)

总效率

(2)

式中

0、

1、

2、

3分别为联轴器效率、带传动效率、大带轮轴承效率、花键轴轴承效率。

4.2.2电动机的转速

为了便于选择电动机的转速,先推断电动机转速的可选范围。

V带传动比i1=2~4,输出转速要求为500~800r/min,则电动机转速可选范围为

Nd=nw×i1=1000~3200r/min

综合考虑经济因素、转速以及工作条件,选定电动机的型号为Y90S-4;可以满足设计要求,技术参数见图表1。

[4]

表1Y90S-4电动机参数

型号

额定功率(Kw)

满载转速(r/min)

堵转电流(A)

额定转矩

堵转转矩

Y90S-4

1.1

1400

110

2.3

2.3

 

 

5系统(带传动)设计

带传动中,带为中间绕性并靠摩擦力工作,所以能缓冲和吸振;运行平衡无噪声;过载时将引起带在带轮上打滑,因而可防止其他零件的损坏;可增加带长以适应中心局较大的工作条件,且结构简单,在近代机械中被广泛采用。

在带传动中,常用的有平带传送、V带传动和同步传动。

但是,在一般机械传动中,应用最广的是V带传动。

V带的截面呈等腰梯形,带轮上也作出轮糟。

传动时,V带和轮糟的两个侧面接触,即以两侧面为工作面。

根据轮糟摩擦的原理,在同样的张紧力作用下,V带传动能产生更大的摩擦力,这是V带传动性能上最主要的优点。

在传动功率相同时,V带张紧力和包角均较小,故可获得较大的传动比和较小的中心距。

再加上V带传动允许的传动比大,结构较紧凑,以及V带已标准化并大量生产等优点,选用V带传动。

普通V带有顶胶、抗拉体、底胶和包布组成。

抗拉体可以是胶帘布或胶绳心。

绳心结构的柔韧性好,适用与转速较高,载荷不大和带轮直径较小的场合,普通V带都制成无接头的环形。

带轮设计时应满足要求:

结构工艺性好;无过大铸造内应力;重量轻。

带传动设计准则:

因为带传动的主要失效形式为打滑和疲劳破坏。

所以带传动设计时在保证带传动不打滑的条件下,具有一定的疲劳强度和寿命。

[5]

依据电动机类型和轴径选择。

已知电动机型号为Y90S-4,轴直径为24mm,电动机转速nw=1400r/min,电动机功率Pd=1.1kw。

5.1确定传动比

式中n为输出轴的转速,其值n=500-800r/min,nw=1400r/min,带入式中求得i=1.7-2.7,取i=2.1。

5.2计算功率Pca

工作情况系数KA=1.1,Pca=KAPca=1.21kw(3)

5.3选择带型

根据PC=1.21kw,n1=1400r/min,选为Z型

5.4确定带轮基准直径D1和D2

初步选定小带轮的基准直径D1,取D1=63mm

计算从动轮的基准直径D2

D2=iD2=132mm

验算带速:

带速太高,会因离心力太大而减低带和带轮之间的正压力,从而减低摩擦力和传动工作能力,同时也减低带的疲劳强度,带速太低,所需要效应力F大,要求带根数多,所以[6]

(4)

5.5确定中心距a和带的基准长度Ld

带传动中心距过小,虽使传动紧凑,带长就短,在一定速度下,单位时间内带的应力变化次数就多,加速带的疲劳破坏。

当传动比较大时,短的中心距将导致包角过小,带传动中心距不宜过大,在速度较高时容易引起带的颤动,所以:

初步选定中心距

a○=1.5(d1+d2)=1.5×195=292.5mm

取a○=300mm符合0.7(D1+D2)﹤a○﹤2(D1+D2)

根据带传动的几何关系,按下式计算所需带的基准长度L`d:

(5)

根据Ld查表选取Ld相近的V带的基准长度Ld=1000mm,则可以计算V带的

中心距

(6)

考虑安装调整和补装预紧力(如带伸长而松弛后的张紧)的需要,中心距的变动范围为

amin=a-0.015Ld=330m

amax=a+0.03Ld=375mm

5.6验算主动轮上的包角α1

小轮包角愈小,传动愈容易产生打滑,带的工作能力不能充分发挥,所以应保证

(7)

5.7确定V带的根数z

计算单根V带的额定功率Pr

由D1=63mm和n1=1400r/min,查得p0=0.25kw,

根据n1=1400r/min,i=2.1和Z型带,可知△p0=0.03kw。

另查得

于是

(8)

计算V带的根数z

取4根。

5.8计算初拉力

初拉力计算公式为:

(9)

式中q为V带每米长质量,q=0.10kg/m,应使带的实际初拉力

5.9计算作用在带轮轴上的力

(10)

式中

是小带轮包角,z是V带根数。

max=1.5

=1911N

max-考虑新带初预紧力为正常预紧力的1.5倍

5.10带轮材料及结构

V带轮的材料主要采用铸铁HT150或HT200;转速较高时宜采用铸铁(或用钢板冲压,焊接而成);小功率传动时可用铸铝或塑料等,根据本机械选用的电动机功率的大小和工作要求,选铸铁为带轮的材料。

铸铁V带轮的典型结构有:

1)实心式;2)腹板式;3)孔板式;4)椭圆轮辐式

根据设计要求,带轮采用实心式,选用材料HT200。

[7]

根据查表查Z型带的截面尺寸。

带轮的基准节宽(mm)

基准线上槽深

(mm)

基准线下槽深

(mm)

槽间距为

(mm)

第一槽对称面至端面距(mm)

最小轮缘厚度

(mm)

外径

(mm)

带轮宽

(mm)

8.5

2.0

7.0

12±0.3

7±1

5.5

67

50

外径:

da=d﹢ha=63﹢2×2=67mm

带轮宽:

,代入数据,得

=50mm

轮毂L=(1.5~2)d=22

键:

3X3

长度:

22

由于各种材质的V带都不是完全的弹性体,因而V带在张紧力的作用下,经过一段时间的运转后,就会由于塑性变形而松弛,使张紧力F0减小,传动动力的能力降低。

因而,带传动必须设计张紧装置。

常见的张紧装置有定期张紧和自动张紧两类。

[8]

 

6轴的设计和校核

6.1带轮传动轴的设计和校核

6.1.1选择轴的材料并确定许用应力

(1)选用45钢正火处理

(2)强度极限

(3)其许用弯曲应力

6.1.2确定轴输出端直径

(1)按扭转强度估算输出端直径。

(2)取A=110

(11)

(3)考虑有键槽,将直径增大5%,则

取轴的直径为整数

=11mm

此段轴通过联轴器与电动机轴相连,所选的直径和长度应和连轴器相符

(4)轴的转矩

(12)

联轴器的计算转矩

,则

查GB/T5843-2003,GY3连轴器满足转速及转矩要求,孔径为20mm,和轴相配合部分长度为38mm。

轴与小带轮相配合,小带轮宽度为50mm,取轴长为100mm,一端倒螺纹。

6.2花键轴的设计和校核

6.2.1求输出轴上的功率、转速和转矩

系统传动总效率

花键轴的输出功率

花键轴的转速

花键轴的转矩

6.2.2求作用在轴上的力

由带轮的设计校核中知,花键轴所受力为1274N

按扭转强度条件计算轴的最小直径

6.2.3材料

45钢,正火处理;花键轴承受轴向载荷,A取较大值,故取A=120

(13)

考虑有键槽,将直径增大10%,则

取轴的直径为整数

=16mm

6.2.4轴的结构设计

首先拟定轴上零件的装配方案,然后逐步确定各段直径的长度和大小。

图4轴的结构草图

1段与钻夹头相连,基本确定长度为113mm,锥度为1:

10,最小直径为24mm;2段套入轴套以及深沟球轴承,初定为6016,长度为180mm,直径为48mm;3段长度初定为31mm,直径为59mm;4段配合轴承,初定为深沟球轴承6010并配合轴套,长度为91mm,直径为50mm;5段为花键连接大带轮,规格为8×42×48×8mm,初定长度为187mm。

然后计算轴承的支反力确定简支梁的轴的支撑跨

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1