小学六年级数学上册第一单元知识点.docx

上传人:b****8 文档编号:30152806 上传时间:2023-08-05 格式:DOCX 页数:15 大小:49.71KB
下载 相关 举报
小学六年级数学上册第一单元知识点.docx_第1页
第1页 / 共15页
小学六年级数学上册第一单元知识点.docx_第2页
第2页 / 共15页
小学六年级数学上册第一单元知识点.docx_第3页
第3页 / 共15页
小学六年级数学上册第一单元知识点.docx_第4页
第4页 / 共15页
小学六年级数学上册第一单元知识点.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

小学六年级数学上册第一单元知识点.docx

《小学六年级数学上册第一单元知识点.docx》由会员分享,可在线阅读,更多相关《小学六年级数学上册第一单元知识点.docx(15页珍藏版)》请在冰豆网上搜索。

小学六年级数学上册第一单元知识点.docx

小学六年级数学上册第一单元知识点

小学六年级数学上册第一单元知识点。

第一单元位置

1、用数对确定点的位置,如(3,5)表示:

(第三列,第五行)

几列几行

↓↓

竖排叫列横排叫行

(从左往右看)(从前往后看)

2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。

3、图形左、右平移:

行不变图形上、下平移:

列不变

小学六年级数学上册第二单元分数乘法知识点。

第二单元分数乘法

一、分数乘法

(一)分数乘法的意义:

1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:

×5表示求5个的和是多少

2、分数乘分数是求一个数的几分之几是多少。

例如:

×表示求的是多少

(二)、分数乘法的计算法则:

1、分数与整数相乘:

分子与整数相乘的积做分子,分母不变。

(整数和分母约分)

2、分数与分数相乘:

用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:

(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:

a×b=b×a

乘法结合律:

(a×b)×c=a×(b×c)

乘法分配律:

(a+b)×c=ac+bc

二、分数乘法的解决问题

(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、画线段图:

(1)两个量的关系:

画两条线段图;

(2)部分和整体的关系:

画一条线段图。

2、找单位“1”:

在分率句中分率的前面;或“占”、“是”、“比”的后面

3、求一个数的几倍:

一个数×几倍;求一个数的几分之几是多少:

一个数×。

4、写数量关系式技巧:

(1)“的”相当于“×”“占”、“是”、“比”相当于“=”

(2)分率前是“的”:

单位“1”的量×分率=分率对应量

(3)分率前是“多或少”的意思:

单位“1”的量×(1分率)=分率对应量

三、倒数

1、倒数的意义:

乘积是1的两个数互为倒数。

强调:

互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:

(1)、求分数的倒数:

交换分子分母的位置。

(2)、求整数的倒数:

把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:

把带分数化为假分数,再求倒数。

(4)、求小数的倒数:

把小数化为分数,再求倒数。

3、1的倒数是1;0没有倒数。

因为1×1=1;0乘任何数都得0,(分母不能为0)

4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

小学六年级数学上册第三单元分数除法知识点:

分数除法

一、分数除法

1、分数除法的意义:

乘法:

因数×因数=积除法:

积÷一个因数=另一个因数

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。

规律(分数除法比较大小时):

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)当除数等于1,商等于被除数。

“[]”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题

(未知单位“1”的量(用除法):

已知单位“1”的几分之几是多少,求单位“1”的量。

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:

单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思:

单位“1”的量×(1分率)=分率对应量

2、解法:

(建议:

最好用方程解答)

(1)方程:

根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):

分率对应量÷对应分率=单位“1”的量

3、求一个数是另一个数的几分之几:

就一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:

两个数的相差量÷单位“1”的量或:

①求多几分之几:

大数÷小数–1

②求少几分之几:

1-小数÷大数

三、比和比的应用

(一)、比的意义

1、比的意义:

两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如15:

10=15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

∶∶∶∶

前项比号后项比值

3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:

路程÷速度=时间。

4、区分比和比值

比:

表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:

相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

前项

比号“:

后项

比值

除法

被除数

除号“÷”

除数

分数

分子

分数线“—”

分母

分数值

7、比和除法、分数的区别:

除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:

0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:

被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:

分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:

比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

小学六年级数学上册第四单元知识点:

一、认识圆形

1、圆的定义:

圆是由曲线围成的一种平面图形。

2、圆心:

将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O表示。

它到圆上任意一点的距离都相等.

3、半径:

连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:

通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。

用字母表示为:

d=2r或r=d/2

8、轴对称图形:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1一条对称轴的图形有:

角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:

长方形

只有3条对称轴的图形是:

等边三角形

只有4条对称轴的图形是:

正方形;

有无数条对称轴的图形是:

圆、圆环。

二、圆的周长

1、圆的周长:

围成圆的曲线的长度叫做圆的周长。

用字母C表示。

2、圆周率实验:

在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

3.圆周率:

任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai)表示。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。

在计算时,一般取π≈。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是倍。

(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

4、圆的周长公式:

C=πd————→d=C÷π

或C=2πr————→r=C÷2π

5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分周长的一半和半圆的周长:

周长的一半:

等于圆的周长÷2计算方法:

2πr÷2即πr

(2)半圆的周长:

等于圆的周长的一半加直径。

计算方法:

πr+2r即r

三、圆的面积

1、圆的面积:

圆所占平面的大小叫做圆的面积。

用字母S表示。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

3、圆面积公式的推导:

(1)用逐渐逼近的转化思想:

体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

(2)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

(3)拼出的图形与圆的周长和半径的关系。

圆的半径=长方形的宽

圆的周长的一半=长方形的长

因为:

长方形面积=长×宽

↓↓

所以:

圆的面积=圆周长的一半×圆的半径

S圆=πr×r

圆的面积公式:

S圆=πr2→r2=S÷π

4、环形的面积:

一个环形,外圆的半径是R,内圆的半径是r。

(R=r+环的宽度.)

S环=πR2-πr2或

环形的面积公式:

S环=π(R2-r2)。

5、扇形的面积计算公式:

S扇=πr2×n/360(n表示扇形圆心角的度数)

6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小的倍数是这倍数的平方倍。

例如:

在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

7、两个圆:

半径比=直径比=周长比;而面积比等于这比的平方。

例如:

两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

8、任意一个正方形与它内切圆的面积之比都是一个固定值,即:

4∶π

9、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。

反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

10、确定起跑线:

(1)每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。

(2)每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。

(因此起跑线不同)

(3)每相邻两个跑道相隔的距离是:

2×π×跑道的宽度

(4)当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

11、常用各π值结果:

π=2π=3π=

4π=5π=6π=

7π=8π=9π=

10π=16π=36π=

64π=96π=25π=

12、常用平方数结果

小学六年级数学上册第五单元知识点:

百分数

一、百分数的意义和写法

1、百分数的意义:

表示一个数是另一个数的百分之几。

百分数是指的两个数的比,因此也叫百分率或百分比。

千分数:

表示一个数是另一个数的千分之几。

百分数和分数的主要联系与区别:

联系:

都可以表示两个量的倍比关系。

区别:

①、意义不同:

百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

4、百分数的写法:

通常不写成分数形式,而在原来分子后面加上“%”来表示。

二、百分数和分数、小数的互化

(一)百分数与小数的互化:

1、小数化成百分数:

把小数点向右移动两位,同时在后面添上百分号。

2.百分数化成小数:

把小数点向左移动两位,同时去掉百分号。

(二)百分数的和分数的互化

1、百分数化成分数:

先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。

2、分数化成百分数:

①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(三)常见的分数与小数、百分数之间的互化

三、用百分数解决问题

(一)一般应用题

1、常见的百分率的计算方法:

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

(一般出粉率在70、80%,出油率在30、40%。

2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:

数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:

单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思:

单位“1”的量×(1分率)=分率对应量

3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

解法:

(建议:

最好用方程解答)

(1)方程:

根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):

分率对应量÷对应分率=单位“1”的量

4、求一个数比另一个数多(少)百分之几的问题:

两个数的相差量÷单位“1”的量×100%或:

求多百分之几:

(大数÷小数–1)×100%

②求少百分之几:

(1–小数÷大数)×100%

(二)、折扣

1、折扣:

商品按原定价格的百分之几出售,叫做折扣。

通称“打折”。

几折就表示十分之几,也就是百分之几十。

例如八折==80﹪,六折五==65﹪

2、一成是十分之一,也就是10%。

三成五就是十分之三点五,也就是35%

(三)、纳税

1、纳税:

纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

2、纳税的意义:

税收是国家财政收入的主要来源之一。

国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

3、应纳税额:

缴纳的税款叫做应纳税额。

4、税率:

应纳税额与各种收入的比率叫做税率。

5、应纳税额的计算方法:

应纳税额=总收入×税率

(四)利息

1、存款分为活期、整存整取和零存整取等方法。

2、储蓄的意义:

人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

3、本金:

存入银行的钱叫做本金。

4、利息:

取款时银行多支付的钱叫做利息。

5、利率:

利息与本金的比值叫做利率。

6、利息的计算公式:

利息=本金×利率×时间

7、注意:

如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

小学六年级数学上册第六单元知识点:

统计

一、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:

1、条形统计图:

可以清楚的看出各种数量的多少。

2、折线统计图:

不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:

能够清楚的反映出各部分数量同总数之间的关系。

三、扇形的面积大小:

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

小学六年级数学上册第七单元知识点:

数学广角

一、“鸡兔同笼”问题的特点:

题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。

二、“鸡兔同笼”问题的解题方法

1、猜测法

2、假设法

(1)假如都是兔

(2)假如都是鸡

(3)古人“抬脚法”:

解答思路:

假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。

这样,鸡和兔的脚的总数就少了一半。

这种思维方法叫化归法。

关系式:

鸡兔总脚数÷2-鸡兔总数=兔的只数;鸡兔总数-兔的只数=鸡的只数。

3、列方程法

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 英语考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1