栈桥方案3.docx

上传人:b****8 文档编号:30004597 上传时间:2023-08-04 格式:DOCX 页数:19 大小:57.80KB
下载 相关 举报
栈桥方案3.docx_第1页
第1页 / 共19页
栈桥方案3.docx_第2页
第2页 / 共19页
栈桥方案3.docx_第3页
第3页 / 共19页
栈桥方案3.docx_第4页
第4页 / 共19页
栈桥方案3.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

栈桥方案3.docx

《栈桥方案3.docx》由会员分享,可在线阅读,更多相关《栈桥方案3.docx(19页珍藏版)》请在冰豆网上搜索。

栈桥方案3.docx

栈桥方案3

杭州湾跨海大桥工程

第I合同段

 

 

杭州湾跨海大桥工程I合同项目经理部

二OO三年十二月三十日

栈桥设计说明

一、栈桥设计荷载为汽—超20级,验算荷载为挂—120,设计桥面净宽为8m,桥面标高为7m,全长1570.5m;栈桥中心线与主桥中心线间距为25.5M。

二、设计依据

1、指挥部总工办和第I驻地办对栈桥审核意见

2、杭州湾跨海大桥工程地质勘测报告

3、公路桥涵设计通用规范(JTJ021-89)

4、公路桥涵地基与基础设计规范(JTJ024-85)

5、公路桥涵地基与基础设计规范(JTJ024-85)

6、招投标有关文件

7、栈桥上部结构计算利用我集团公司引进的韩国大型结构计算软MIDAS/CIVIL

8、专家咨询会意见和建议

三、气象、水文、地质情况:

桥位区桩基地质以淤泥质亚粘土为主,基本无不良地质。

最高潮位5.54m,最低潮位-4.01m,设计高潮位拟采用5.30m;10m高30年重现期风压为0.54KN/m2,20m高30年重现期风压为0.71KN/m2,30m高30年重现期风压为0.82KN/m2。

四、栈桥结构:

1.桥采用跨径8.5m,每个墩设3根φ60钢管桩。

钢管桩壁厚为8mm;桩顶采用H692型钢横梁做横向连接,横梁上面纵桥向安装间距为28.33cm的I18型钢,在I18型钢上面铺设10mm厚钢板作为桥面板,板间缝宽为5cm。

3.钢管桩入土深度:

内河港池以北方向桩入土深度平均22m(即栈桥2#~136#墩),其中冲刷已考虑2M。

内河港池以南方向桩平均入土深度暂定为23m(即栈桥137#~185#墩),其中冲刷已考虑3M,对于深水区冲刷深度根据试桩情况予以调整;双排桩位置桩长均取18m。

4.在滩涂区每5孔设一联,增加一排桩。

在深水区每隔一跨加一排钢管桩。

5.在栈桥左侧设两处会让点,分别在66#墩和131#墩位置。

会让点宽4m,长36m,荷载等级同栈桥。

6.由于堤坝顶加固后标高为7.35m,而栈桥的标高为7.0m,因此在0#台至6#墩设置过度段,纵坡为0.7%。

其它桥跨纵坡均为0%;0#台桥面宽度按10m设计。

1#墩以南方向桥面宽度均为8m。

7.每联(5孔)设置一道伸缩缝,缝宽3cm;伸缩缝位置、道桥板及栏杆均要断开,并且主梁与下横梁采用φ24高强螺杆连接,主梁下翼板左右各打孔长为6cm,宽2.6cm,另一侧上横梁不得与此主梁焊接。

8.防腐处理:

钢管桩防腐采用牺牲壁厚处理,即钢管桩顶部至海床面地下1.5M,平均长6.5M壁厚采用10MM钢板制作;主梁与横梁焊缝位置涂防锈漆;栏杆防锈漆刷二次,面漆用桔红色,扶手用红白相间颜色处理,要求表面光滑并有亮泽。

由于冲刷对桩影响比较复杂,因此在使用期间要对桩周冲刷加强观察,特别是深水区要有专人监控,如发现冲刷较严重应及时抛石回填,并在使用期间对桩进行沉降观测。

前言

1、地形、地质

北引桥陆地区,地势平坦;滩涂区北高南低,坡降平缓,地面高程2.3m~-3.26m。

据物探资料显示,本合同段桥位区桩基地质以粘性土、亚砂土、粉砂土、淤泥质粘土为主,基本无不良地质。

2、气象、水文

杭州湾地处东部沿海地区,受其典型喇叭状地形形成的“狭管效应”影响,水文、气象条件十分复杂,属重大灾害天气多发地带。

影响桥位区施工作业不利气象因素主要有季风(全年平均风速3m/s左右,北岸略高于南岸)、台风(多发生在7-9月间)、雾(北岸10月份出现最多,持续时间一般在4小时以内)。

不利的水文因素主要是潮汐,杭州湾为强潮河口湾,潮汐类型为浅海半日潮,日潮不等现象明显。

北岸乍浦站(1930-1999年)潮汐特征值:

项目

最高潮位

最低潮位

最大潮差

平均高潮位

平均低潮位

平均潮差

潮位(m)

5.54

-4.01

7.57

2.52

-2.12

4.65

桥位北岸乍浦站设计潮位(单位m)

频率

0.33

1

2

5

备注

设计高潮位

6.15

5.80

5.55

5.30

建议采用

设计低潮位

-3.58

-3.56

建议采用

第一节施工栈桥设计计算

一、计算资料

1、栈桥设计荷载:

汽车—超20级、挂车—120,设计桥面净宽为8m,标高为7m,平均滩涂地面标高为0.15m,最低滩涂地面标高为-4.12m,最高滩涂标高为2.82M。

2、栈桥区地层为淤泥质亚粘土,物理指标为:

W=40.4%,γ=17.7KN/m3,e=1.171,IL=1.33,a0.1-0.2=0.73MPa-1,Es=3.1MPa,C=18.2KPa,φ=4.1°,qc=0.97MPa,fs=10.6KPa,N=3击

3、10m高30年重现期风压为0.54KN/m2,20m高30年重现期风压为0.71KN/m2,30m高30年重现期风压为0.82KN/m2。

4.拟定栈桥结构:

栈桥采用跨径8.5m,每个墩设3根φ60钢管桩,钢管桩壁厚为8mm,桩顶采用H692型钢横梁做横向连接,横梁上面纵桥向安装间距为160cm的H600型钢纵梁,纵梁上面横桥向安装间距为28.33cm的I18型钢,在I18型钢上面铺10mm厚钢板作为桥面板。

二、栈桥上部结构计算

栈桥上部结构计算利用我集团引进的韩国大型结构计算软MIDAS/CIVIL进行,主梁采用简支梁计算,横梁采用连续梁计算。

计算结果如下:

计算荷载(汽-超20)

序号

构件名称

汽-超20(组合I)

应力(Mpa)

挠度(MM)

容许剪应力

计算剪应力

容许应力

计算应力

容许挠度

计算挠度

1

下横梁

85

28.6

145

68.9

7

1.0

2

主梁

85

30

145

43.1

13

2.3

3

上横梁

85

5.9

145

25.6

2.7

 

验算荷载(挂车-120)

序号

构件

名称

挂车-120(组合II)

应力(Mpa)

挠度(MM)

容许剪应力

计算剪应力

容许应力

计算应力

容许挠度

计算挠度

1

下横梁

1.4*85

58.1

1.4*145

100.5

8.4

2.3

2

主梁

1.4*85

67

1.4*145

100.5

15.6

4.3

3

上横梁

1.4*85

14.2

1.4*145

66.4

3.6

注:

1、根据规范JTJ025-86,第1.1.5条规定,对于临时结构,其竖向容许挠度可适当放大;

2、根据规范JTJ025-86,第1.1.5条规定,用挂车验算时,容许竖向挠度可增加20%。

3、计算挠度为累计挠度。

三.桩基承载力计算

根据计算结果,汽-超20计算荷载产生的单桩最大竖直荷载为433.6KN;挂-120验算荷载产生的单桩最大竖直荷载为620.5KN。

对于沉桩钢管桩自重不计。

根据规范(JTJ024-85,4.3.2-4)规定,打入桩的容许单桩承载力计算公式为:

[p]=(αiuLτp+αAσR)/2,对于打入桩αi、α值均取1。

对于荷载组合II规范规定(JTJ024-85,4.3.2-4)容许承载力可以提高25%,U=0.6m×3.14=1.884m,钢管桩地层处于软塑粉砂和流塑、软塑亚粘土地层,下面取两个典型断面进行桩长计算:

1、根据设计柱状图孔位编号XZK22:

桩身所处地层均为流塑淤泥质亚粘土地层(最不利),τp=25KPa,σR=1000KPa,A=0.6×0.6×3.14/4=0.283m2,但根据专家咨询会意见,对于管桩桩底支承力不得超过承载力的10%考虑,为了安全起见暂不考虑;根据指挥部总工办和驻地办初步审查意见,对于临时结构承载力可提高25%,即安全系数取1.6考虑。

A、汽-超20计算荷载-桩长计算

433.6=[1.884×L×25×1.25%]/2,得L=14.72M.

B、挂-120验算荷载-桩长计算

620.5=[1.884×L×25×1.25]/2,得L=21M.

2、根据设计柱状图孔位编号XZK23:

桩身所处地层为:

中间有6.5M夹层为软塑亚砂土,取τp=35KPa;其余为流塑淤泥质亚粘土地层,取τp=25KPa,σR=1000KPa,A=0.6×0.6×3.14/4=0.283m2。

A、汽-超20计算荷载-桩长计算

433.6=[1.884×(L-6.5)×25+1.884×6.5×35]×1.25/2,

得L=12.44M.

B、挂-120验算荷载-桩长计算

620.5=[1.884×(L-6.5)×25+1.884×6.5×35]×1.25/2,

得L=18.22M

根据上述计算结果所得:

汽-超20荷载计算桩Lmax=14.72m,Lmin=12.44m,;按挂-120验算荷载计算桩长为Lmax=21m,Lmin=18.22m。

由于挂车-120作为验算荷载上桥概率很小,并且根据指挥部总工办和驻地办审查意见:

以汽-超20荷载控制设计;在内河港池围堤以北方向全部为滩涂区,在大桥左侧约100M位置在修建码头通道,局部冲刷影响较小,平均桩长取为L=19M;在内河港池围堤以南方向滩涂区,冲刷影响较大,平均桩长取L=20M;对于双排桩墩位桩长均取L=18M。

但是根据试桩结果(已试桩一根),每M极限承载力仅为3.47T,而根据设计提供参数推算每M极限承载力为4.71T,两者相差较大;因此为了提高安全系数,内河港池以北方向桩入土深度平均22m(即栈桥2#~136#墩),其中冲刷深度为2M;内河港池以南方向桩平均入土深度暂定为23m(即栈桥137#~185#墩),其中冲刷深度为3M,并再进行试桩二根,根据试桩情况予以调整;其中双排桩位置桩长均取18m。

3.桩基水平承载力计算

Rh=a3EIxoa/Vx

其中E—弹性模量;

I—桩截面惯性矩;

Xoa—桩顶容许水平位移值;

Vx—桩顶水平位移系数;

a—桩的水平变形系数;

a=(mb0/EI)1/5

其中m—桩侧土水平抗力系数的比例系数;

b0—桩身的计算宽度,圆形桩(D=600)取值为b0=0.9(1.5d+0.5);

查得m=2000KN/m4,计算得b0=1.26m,I=6.52×10-4m4,则a=0.454(1/m)

Vx取2.441,假定桩顶的容许偏移值为Xoa=4.1cm(见后面计算)

得Rh=308KN

(1)考虑海水流动对桩产生的水流压力为P=KAγV2/2g

其中:

K—形状系数,圆形取0.8

V—水流速度,取平均涨潮最大流速,3.77m/s

γ—水的容重,取10KN/m3

A—阻水面积,按照入水8m计算,A=0.6×8=4.8m2

P=0.8×4.8×10×3.772/(2×9.8)=27.8KN

(2)风载对桩的影响

ωk=K1K2K3K4ω0

式中ωk—风荷载的标准值

K1—对设计风速频率换算系数,取0.85

K2—为风压体型系数,取0.5

K3—为风压高度变化系数,取1

K4—为地形条件系数,取1.3

ω0—为基本风压值,取0.54KN/m2

求得ωk=0.3KN/m2

可以计算栈桥的单跨横向挡风面积为14.3m2,单跨产生的风荷载力的大小为4.29KN;纵桥向挡风面积为7m2,风荷载力的大小为2.1KN。

(3)考虑栈桥上车辆制动产生的水平荷载对桩的影响

汽车制动产生的水平力按车辆总重量的10%计算,挂-120的总重量为1200KN,产生的水平力为120KN,方向与制动方向垂直。

以上合计120+4.29+27.8=152.1KN,远小于栈桥桩基的单桩水平承载力。

4.钢管桩的应力及水平位移计算

钢管桩的长细比为:

λ=l/i=μl0/i

其中l为计算长度,l0为钢管长度,取10m计算,i为惯性矩半径,8mm壁厚直径为60cm的钢管桩i=0.208,μ为长度系数,取2/3。

求得λ=32.05<40,因此,钢管桩为短杆构件,不需要进行稳定校核。

栈桥施工时在A56墩之前的桩每42.5m加一排钢管桩,在A56—A57墩之间的栈桥每隔一跨加一排钢管桩,对A56墩附近的钢管桩进行计算,此时水深最大处为7m左右,桩顶距海底面高度为9m。

(2)计算桩的水平位移

在进行单桩桩顶水平位移的验算中,考虑单桩在风荷载、水流荷载、车辆动荷载等外部荷载同时作用在单桩且相互夹角为零的最不利情况。

车辆制动荷载为120KN,考虑由9根钢管桩受力,则单桩受力为13.3KN,作用点考虑作用在桩顶上。

纵桥向风荷载作用力为2.1KN,考虑由3根桩进行承担,单桩受力为0.7KN,作用点在桩顶。

水流荷载为24.3KN,考虑由3根桩承担,单桩受力为8.1KN,作用点为水深的H/3处,即桩与海床分界点上2.33m处。

单桩的受力情况如下图:

 

13.3KN

22.1KN

0.7KN

9m

9m

8.1KN

145KN.m

2.33m

7m

 

求得等效水平力H=22.1KN;弯矩M=145KN.m。

δ=H0δHH(0)+M0δHH(0)其中

δHH(0)=(1/a3EI)×[(B3D4-B4D3)+Kh(B2D4-B4D2)]/[(A3B4-A4B3)+Kh(A2B4-A4B2)]

δMH(0)=(1/a3EI)×[(B3C4-B4C3)+Kh(A2C4-A4C2)]/[(A3B4-A4B3)+Kh(A2B4-A4B2)]

Kh为桩柱底面土因转动而发生的土抗力影响系数,当ah>2.5时,取为0;查表得(B3D4-B4D3)值为12.412;(A3B4-A4B3)值为3.7624;(B3C4-B4C3)/(A3B4-A4B3)值为2.1875,代入可求得水平位移量为:

δ=(22.1/0.4543×2.03×108×6.54×10-4)×12.412/3.7624

+(145/0.4543×2.03×108×6.54×10-4)×2.1875

=0.61×10-2+1.18×10-2=1.79×10-2m

水平位移△L=(OB/OA)×δ=16/7×1.79cm=4.1cm

(2)计算桩的应力

σmaxmin=N/A+M/W=620.5/0.015+(145+620.5×0.041)/1.852×10-3

=4.14×104+9.203×104

所以,σmax==13.343×104KN/m2<1.3[σ]=145MPA;

σmaxmin==5.063×104KN/m2<1.3[σ]=145MPA

满足要求,

通过以上的计算可知,当所有荷载作用在单跨之间的管桩上已经能够承受水平变形以及满足应力的要求,因此排间的剪刀撑在满足构造要求即可,此时剪刀撑也是整座桥梁安全储备体系。

5、钢管桩拼接钢板与焊缝厚度验算

钢管桩接头拼接板采用4块250×150×8mm弧型钢板,均匀分布,。

验算如下:

按汽超—20计算得:

桩顶承载力为43.4t,桩自重按30m考虑为3.5t,则接头位置最大承载力为N=46.9t,一块拼接板焊缝长度:

L=125×2+150-20=380mm。

1.拼接板受压时其应力验算(假设钢管桩接头位置全由拼接板受力)。

A=0.008×4×0.15=4.8×10-3m2

σ=N/A=46.9×104/4.8×10-3=97.7MPa<[σ]=145Mpa,满足要求。

如果海水对拼板腐蚀2MM,可推算得:

σ=130MPA<[σ]=145Mpa也满足要求。

2.拼接板焊缝厚度计算(不考虑钢管桩自身对接焊)。

查《桥规》得贴角焊缝的容许应力:

[τh]=83.3MPa。

需要的贴角焊缝计算厚度为:

hf=N/L[τh]=46.9×104/(380×83.3×4)=3.7mm

则焊缝厚度为:

δf=ht/0.7=3.7mm/0.7=5.3mm

由上述验算得:

钢管桩接头采用4块250×150×8mm弧型钢板均匀分布拼接,焊缝厚度5.3mm满足要求。

考虑海水腐蚀,实际施工焊缝厚度取6.4mm,符合《桥规》关于最小、最大焊缝厚度的要求;并且要求钢管接口进行对接焊,给予加强。

三、结论

经过对钢管桩入土深度、水平位移和应力,上构型钢抗弯、抗剪承载力及变形计算,设计的栈桥满足设计荷载承载能力要求。

第二节施工方案、方法及其质量控制要点

本合同负责北岸滩涂区东侧施工栈桥的修建,栈桥桩号:

K50+008.7-K51+579,根据设计,在大桥东侧搭设施工栈桥,总长为1570.3m,与陆地临时道路接通,作为本合同施工用桥,同时作为第Ⅱ合同段通向桥轴向码头的通道。

栈桥搭设标准:

在栈桥内设两处会让点,每500m一处,会让点宽4m,长36m,荷载等级同栈桥。

由于堤坝顶加固后标高为7.35M,而栈桥桥面标高为7.0M,因此在0#台至6#墩设置过渡段,纵坡为0.7%,其它桥跨纵坡均为0%;0#台桥面宽度按10M设计,1#墩以南方向桥面宽度均为8M。

1、栈桥施工方案

本栈桥由滩涂区下部结构工区实施,根据工程现场施工条件,结合下部结构施工方案,拟定施工栈桥方案如下:

施工栈桥由主栈桥、辅助栈桥、施工平台、会让点共四部分组成。

栈桥桥面标高7.0m,栈桥各部分标高一致。

序号

名称

功能

1

主栈桥

机械设备、材料运输通道

2

辅助栈桥

每墩台设一道,长宽综合钻孔平台尺寸考虑,兼做会车道

3

施工平台

每墩位横桥向搭设1座,用于搭设钻孔平台、下部结构施工作业场地。

除滩涂区悬浇段在下部结构完成后马上进行周转外,其余等上部结构右半幅完成后再拆除。

4

会让点

全桥共设两处

本合同A27-A56号墩位于滩涂区,根据滩涂区表层地质以淤泥质亚粘土为主且其水位受潮汐影响的实际情况,栈桥钢管桩基础施工,采用50t履带式吊机配ZD-60(40)振动锤插打,沿北岸海塘向南逐孔打设。

根据履带吊机的施工半径,栈桥跨径选定为8.5m。

有关图表详见“栈桥搭设布置图”、“栈桥会让点布置图”、“栈桥布置图”。

2、施工栈桥工艺流程框图

见附表

3、栈桥施工进度安排

栈桥施工是确保滩涂区桥梁下部工程顺利施工的关键,计划开工时间2003年11月30日,主栈桥2004年7月底投入使用,施工工期为8个月。

栈桥施工计划投入两套设备按两个工作面展开施工,主栈桥使用一套设备独立进行作业,辅助栈桥、施工平台及钻孔平台使用另一套设备进行独立施工。

施工一座辅助栈桥、施工平台及钻孔平台平均考虑7天,主栈桥每一天平均完成1跨(8.5m/跨)。

考虑各种海上不利条件,取时间效率系数0.8,则主栈桥需施工时间:

185孔/(1×0.8)=231天。

即满足栈桥施工进度要求。

4、栈桥施工方法及顺序

施工顺序:

施工准备测量定位→导向架固定→吊机就位→起吊管桩→打至设计标高→桩顶切槽及牛腿安装→横梁就位焊接→纵梁固定焊接→直道板横梁铺设→铺设桥面板→扶手安装(油漆)→设备移位→其它附属设施安装。

等Ⅱ合同施工完成后,再进行栈桥拆除。

(1)0#台基础和1#墩承台施工

本栈桥0#台位于海塘堤坝上,基础采用C25钢筋砼,在每根主梁位置预埋厚16MM钢板和锚筋,以便主梁与其焊接固定;1#墩位于堤坝平台上,基础采用C25钢筋砼,在每根柱位置预埋厚16MM钢板和锚筋,以便主梁与其焊接固定;具体见图纸.

(2)钢管桩打设

打桩采用定制导向框架定位,即先由测量人员在已施工完的桥面上打出纵横轴线,由50t履带吊车吊住导向框架依此综合横轴线向前延伸及左右平移,人工辅助微调,经测量校核桩位满足要求后(水平偏差小于10CM)进行导向架固定,之后进行吊桩、打桩直至设计标高(导向架同时可作为标高控制平台,桩顶标高偏差±5CM)。

为保证施工质量和进度,钢管桩打设时不分节,预先在陆上按设计长度拼装好,拼接位置采用破口焊接,并用6块20*8*1钢板贴面周边焊给予局部加强。

根据理论计算,每根桩强度和稳定性可满足施工荷载要求,为增强栈桥的整体刚性,在每排三根管桩上加焊16#槽钢剪刀撑;桩号K51+529以北方向每间隔5孔增加一排钢管桩;K51+529——K51+579之间每隔一孔增加一排钢管桩,以增强抵抗水平推力及风浪引起附加力。

我部计划选择在栈桥右侧打入三根试桩和十二根锚桩,其中锚桩入土长度为19M,中心桩入土长度初定按19.0M、22M、22M控制,,通过试桩所得承载力和沉降量来调整深水桩基入土深度。

(2)帽梁安装

桩顶横梁置于牛腿上,牛腿采用10mm厚钢板焊接制作而成,每个牛腿由一块面板和两块竖向肋板组成,水平劲板尺寸为320mm×200mm,直角梯形肋板尺寸为顶宽200×底100×高300mm,肋板间距150mm,每根管桩上布置两只牛腿,采用电焊连接;

(4)栈桥上部结构

上部结构按照从下到上的层次依次安装,各种型钢预先按设计长度定制.主梁采用H600型钢长为900CM,每孔6根,间距为160CM;采用50t履带吊车吊装,每孔间主梁连接采用错位搭接焊施工方法,搭接长度50CM;主横梁各节点采用四面焊接。

道桥板横梁采用I18型钢长为900CM,纵向间距为28.3CM,采用50t履带吊车安装,与主梁焊接采用间断跳焊方法,以防损伤主梁;桥面板采用厚1CM钢板铺设,并与道桥板横梁焊接固定。

最后安装栏杆、水管、警示灯、主横梁防腐处理等附属设施。

每42.5M设置一道伸缩缝,即在双排墩(桩距1.2M)位置一端能自由伸缩,用φ24MM高强螺杆把主横梁连接,同时要保证道桥板与主梁同时纵向能自由伸缩。

为防止施工船只冲撞,在栈桥栏杆上设置安全标志及警告装置。

5、

栈桥设计技术交底

第三节施工栈桥主要需咨询的问题

1、栈桥的设计计算及结构型式是否合理?

2、由于汽-超20荷载与挂车-120验算荷载控制设计的桩长,计算结果相差比较大,根据实际情况挂车-120上桥可能性不大,对于临时工程是否可按汽-超20荷载计算的桩长适当加长?

3、栈桥的施工方案及计划安排是否合理可行?

 

技术交底记录表

交底人

日期

内容

关于栈桥设计和施工方案技术交底

具体交底详细内容见附件-栈桥设计和施工方案有关图纸及说明,下面就有关施工中要求注意事项:

1)桩长以港池以北方向单排桩入土深度为19M,以南方向单排桩入土深度为20M;双排桩入土深度为18M。

(入土桩长根据试桩结果所得数据调整)

2)打入桩施工要求:

垂直度小于1.5%,桩基偏位不得大于10CM;入土深度误差在10CM以内。

3)牛腿的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1