声控报警电路实验报告之欧阳育创编.docx
《声控报警电路实验报告之欧阳育创编.docx》由会员分享,可在线阅读,更多相关《声控报警电路实验报告之欧阳育创编.docx(18页珍藏版)》请在冰豆网上搜索。
声控报警电路实验报告之欧阳育创编
实验报告
时间:
2021.02.04
创作:
欧阳育
实验名称:
声控报警电路设计
实验学生:
所属班级:
班内序号:
一,摘要
近年来,随着我国经济的发展和人民生活水平的提高,生活节奏的加快,人们对电子报警器的需求日益增加。
电子报警器应用于安全防范,系统故障,交通运输,医疗救护等领域,和社会生产密不可分。
例如声控报警系统在生活中处处可见,楼道里的声控节能灯,店铺联网报警器等等,其功能简单,成本较低,因而广泛应用于各种家用电器和小电子产品中。
本课题基于应用需求,结合实验要求设计电路。
报告介绍了简易的声控报警器的电路设计和电路的搭建调试。
关键词:
报警器;CD4011;无源蜂鸣器;LM358
二,引言
随着电力电子技术、计算机技术、自动控制技术的迅速发展,电子设备、电子仪器的出现日新月异,在市场上电子产品的竞争较为激烈。
本课程设计利用驻极体式咪头作为声传感器获得电压,经LM358放大电路两级放大,然后通过电压比较器和多谐振荡器,输出驱动蜂鸣器和发光二极管工作报警。
1,设计要求
1,设计任务要求
设计一个声控报警电路,在麦克风附近击掌(模拟异常响动),电路能发出报警声,持续时间大于5秒。
声音传感器采用驻极体式咪头,蜂鸣器用无源式蜂鸣器。
2,提高要求
1,增加报警灯,使其闪烁报警;2,增加输出功率,提高报警音量,加强威慑力。
2,电路设计
1,系统组成框图
2,系统总体设计思路
驻极体式咪头作为声音传感器,将击掌产生的声音信号转化为电信号,微弱的电信号经过同相放大器放大后便于传输和驱动,放大信号进入同相比较器,比较器根据实验可以设置合理的比较电压VREF,当放大信号高于比较电压VREF时,放大器输出高电平促发方波振荡器开始工作,振荡产生的方波经三极管放大即可驱动无源式蜂鸣器发出报警声音。
但由于一次拍手产生的电信号只有短暂的脉冲,故还需要在比较器后加入延时电路,减缓脉冲电压下降的速度来实现延时报警。
3,单元电路设计思路
声音采集单元设计原理简述
驻极体话筒由声电转换和阻抗变换两部分组成。
声电转换的关键元件是驻极体振动膜,当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。
其膜片与金属极板之间的电容量比较小,因而它的输出阻抗值高,约几十兆欧以上。
这样高的阻抗是不能直接与音频放大器相匹配的。
所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。
因为驻极体式麦克风内部结构含场效应管,所以驻极体话筒必须提供直流电压才能工作。
本实验采用漏极输出型电路,电路图如下
实际电路参数
麦克风中的场效应管的UDS一般在1.5V~4.5V之间,而IDS一般在0.1mA~1mA之间。
若供电电压VCC在6V~8V时,可知RD约在2.2K~5.1K之间。
实验电路可预取2.8K。
C为隔直电容,可采用22uF的电解电容。
3,信号放大单元设计原理简述
由驻极体式麦克风转化产生的电信号是微弱信号,经测量在击掌瞬间麦克风输出的最大值约为12mV,该信号必须经过放大器放大之后与比较器比较。
该部分信号的放大由LM358来实现,用LM358构成一级放大约100倍,第二级电压跟随的形式。
一级电路设计原理如下:
第一级采用同相放大电路,输入信号从直流补偿电阻R1输入到运放的同相输入端。
反馈网络为R2和R3,构成深度电压串联负反馈放大电路。
根据分析集成运算放大电路的两个重要特点(“虚短”、“虚断”)可知:
因为U+=U-=Ui(“虚短”,但不是“虚地”),I+=I-=0
所以
同相输入运算放大器中,当Rf=0或R1=∞时,Auf=1+(Rf/R1)=1,即输出电压与输入电压大小相等,相位相同,这种电路称为电压跟随器。
实际电路参数
麦克风的测量中,输出的电信号约为150mV,故初步设定放大倍数为100倍,使放大级输出约为1.5V。
放大部分电路参数如图2.3.2(a)。
再放大之后,紧跟一级电压跟随缓冲,电压跟随器参数如图2.3.2(b)所示。
3,电压比较单元
设计原理简述
电压比较器是对两个模拟电压比较其大小,并判断出其中哪一个电压高,如图1所示。
图1(a)是比较器,它有两个输入端:
同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。
另外有电源V+及地(单电源比较器),同相端输入电压VA,反相端输入VB。
VA和VB的变化如图2.3.3(a)所示。
在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。
在这种情况下,Vout的输出如图1(c)所示:
VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。
根据输出电平的高低便可知道哪个电压大。
如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。
与图1(c)比较,其输出电平倒了一下。
输
出电平变化与VA、VB的输入端有关。
如果输入电压VA与某一个固定不变的电压VB相比较,此固定不变的VB称为参考电压、基准电压或阈值电压。
在试验中合理设置参考电压便可以实现特定的电压比较。
实验原理图即如下
既此时有如下的电压输出关系,当VA>VB时,uo=+Uom
为了便于电路组合之后的调试过程,特引入电位器分压,如图2.3.3(b)所示,信号从同相端输入,参考电压从
2.3.4RC延时单元
设计原理简述
当有高电平加在电路输入端时,电容C开始充电,直到电容两端电压与充电电压相等。
当充电电压下降至0时,电容C开始通过电阻R放电,直到电容C储存的电荷全部释放。
通过这样快充慢放的过程实现电路电压下降的延时功能,具体电路图如下
实际电路参数
实验要求报警时间不低于5s,根据t=RC初步计算,可取电阻R=100k,电容C=0.01uF。
预计报警时长持续10s左右。
2.3.5方波振荡单元
设计原理简述
方波振荡器由门电路和阻容元件构成,它没有稳定状态,只有两个暂稳态,通过电容的充电和放电,使两个暂稳态相互交替,从而产生自激振荡,输出周期性的矩形脉冲信号。
由于矩形脉冲含有丰富的谐波分量,因此,常将矩形脉冲产生电路称作多谐振荡器。
本实验中采用CD4011实现方波振荡,电路图如下。
输入UO一个高电平时,该方波振荡器主要依靠电整一个周期的波形变化如下。
而输入信号UO是整个振荡器的开关电平,当UO输入高于Vth的高电平时,振荡器正常工作输出方波;当UO输入低于Vth的低电平时,门G1始终输出高电平VOH,电路无法振荡输出方波。
实际电路参数
该多谐振荡器的振荡周期与时间常数RC、门电路的阀值电压Vth均有关系,频率稳定性较差。
此处做理想近似计算。
在T1期间G1输出高电平VOH,G2输出低电平VOL,电容C充电。
为了便于计算,忽略门的输出电阻和输入端电流,则充电常数为RC。
初值
,终值为
,稳态值
,由此可得
在T2期间G1输出低电平VOL,G2输出高电平VOH,电容C反向充电,VA从Vth+(VOH-VOL)开始下降,到t=t3时VA下降至Vth,初值VA(t1)=Vth+(VOH-VOL),终值为
,稳态值VA(t2)=Vth,由此可得
综上,振荡周期是
欲使其驱动蜂鸣器和发光二极管,设置元件参数如下:
5,无源式蜂鸣器报警单元设计原理简述
无源蜂鸣器内部没有自带的振荡源,需要由前级输出的频率在2K-5K的方波来驱动。
试验中加一晶体管放大再接蜂鸣器增加蜂鸣器的输入功率,以保证更好的实验效果。
实际电路参数
试验元件初置参数如图,采用NPN管8050和电阻R=2K。
3,单元电路的组合设计
单元电路在组合的时候还需要考虑各个单元之间的输入输出阻抗的平衡。
先对各级之间组合的做如下连接说明:
1,声音采集单元与信号放大单元之间连接要注意,LM358构成的放大单元的输入阻抗理想情况接近于无穷大,放大单元的输入阻抗作为声音采集系统的输出负载,导致声音采集单元输出的信号电流过小且和电压脉冲变化不明显,这将严重影响后级单元对信号的接收和处理。
故在电压放大单元的输入端与地之间并一个小阻值电阻来减小声音采集单元的输出阻抗
2,电压比较单元和延时单元之间要防止电容对前级电路放电,电流回流。
故在电压比较单元和延时单元之间加一个1N4148二极管来实现单向导通,禁止电容对前级电路放电的影响。
3,在方波振荡器和发光二极管之间需要串接一个2K左右的电阻来降低通过发光二极管的电流,保护发光二极管因电流过大而损坏。
3,电路仿真
1,单元仿真
测试信号放大单元工作情况,基本要求实现对小信号放大倍数100倍。
设计符合该单元放大一百倍的基本要求。
图3.1.1(c)
2,电压比较单元仿真
电路能够实现参考电压的比较,并且在不同的参考电压之下电压比较器均能实现无滞回的同相电压比较功能。
3,延时单元仿真
延时电路要求实现高电平下降的延时功能,在仿真中即给延时电路输入一个短暂的高电平,检测输出会发现输出高电平缓慢下降。
若出现发现下降缓慢且时间大于5S,则满足设计要求。
在延时电路输出端可以看到明显的快速充电和断开开关后缓慢放电的过程。
图3.1.2(c)
4,方波振荡单元仿真
方波振荡器要求在前级输入高点电平时,震荡输出一个高频的方波信号,以驱动后级的蜂鸣器发出报警。
5,整体仿真测试
模拟麦克风信号的输入,整体电路对该输入响应,最后应能检测出能驱动蜂鸣器的方波信号。
4,电路搭建与调试
模拟麦克风信号的输入,整体电路对该输入响应,最后应能检测出能驱动蜂鸣
图3.2.2
4,电路搭建与调试
1,信号放大单元搭建与调试
信号放大单元采用LM358实现,其芯片封装管脚图如图4.1.1所示,该单元电路图如图4.1.2所示,图中设置R2=1K便于放大倍数的更改,更改电阻R1即可快速改变该单元的放大倍数,例如图示电路图中R1为100K,则有放大倍数为100倍,按图搭建电路如图4.1.3(a)所示,并设置R1=50k。
输入信号的参数如图4.1.3(b)所示,频率为1KHz,峰峰值为20mV。
输出波形如图4.1.3(c)所示,频率为1KHz,峰峰值为1V,即设计和搭建符合要求。
最后需要注意,在级连调试时只需要更改R1阻值即可更改该单元的电压放大倍数。
2,电压比较单元搭建与调试
电压比较单元依旧是采用LM358来实现。
3,方波振荡单元搭建与调试
方波振荡的主要元件是CD4011
4,
整体级联调试
5,实验总结与探讨
1,电阻阻值使用错误,最简单的事情是差错之后最难检查的事情,因而保险起见,在第一步时候就先用万用表确认阻值。
2,电解电容方向错误,易发生爆炸。
3,芯片管脚接错,因为管脚较密,故在连接时一定要细心。
6,实验元件与仪器资料
1,驻极体式咪头
构造与原理
驻极体话筒由声电转换和阻抗变换两部分组成。
声电转换的关键元件是驻极体振动膜。
它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。
然后再经过高压电场驻极后,两面分别驻有异性电荷。
膜片的蒸金面向外,与金属外壳相连通。
膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。
这样,蒸金膜与金属极板之间就形成一个电容。
当驻
极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。
驻极体膜片与金属极板之间的电容量比较小,一般为几十pF。
因而它的输出阻抗值很高(Xc=1/2~tfc),约几十兆欧以上。
这样高的阻抗是不能直接与音频放大器相匹配的。
所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。
场效应管的特点是输入阻抗极高、噪声系数低。
普通场效应管有源极(S)、栅极(G)和漏极(D)三个极。
这里使用的是在内部源极和栅极间再复合一只二极管的专用场效应管。
接二极管的目的是在场效应管受强信号冲击时起保护作用。
场效应管的栅极接金属极板。
这样,驻极体话筒的输出线便有三根。
即源极S,一般用蓝色塑线,漏极D,一般用红色塑料线和连接金属外壳的编织屏蔽线。
2,极性判断
它的电路的接法有两种:
源极输出和漏极输出。
源极输出有三根引出线,漏极D接电源正极,源极S经电阻接地,再经一电容作信号输出;漏极输出有两根引出线,漏极D经一电阻接至电源正极,再经一电容作信号输出,源极S直接接地。
所以,在使用驻极体话筒之前首先要对其进行极性的判别。
在场效应管的栅极与源极之间接有一只二极管,因而可利用二极管的正反向电阻特性来判别驻极体话筒的漏极D和源极S。
将万用表拨至R×1kΩ档,黑表笔接任一极,红表笔接另一极。
再对调两表笔,比较两次测量结果,阻值较小时,黑表笔接的是源极,红表笔接的是漏极。
6.1.5电路接法
接法1:
源极输出
源极输出类似晶体三极管的射极输出。
需用三根引出线。
漏极D接电源正极。
源极S与地之间接一电阻Rs来提供源极电压,信号由源极经电容C输出。
编织线接地起屏蔽作用。
源极输出的输出阻抗小于2k,电路比较稳定,动态范围大。
但输出信号比漏极输出小。
接法2:
漏极输出
漏极输出类似晶体三极管的共发射极放入。
只需两根引出线。
漏极D与电源正极间接一漏极电阻RD,信号由漏极D经电容C输出。
源极S与编织线一起接地。
漏极输出有电压增益,因而话筒灵敏度比源极输出时要高,但电路动态范围略小。
1,集成运放芯片LM358
6.2.2LM358简介
LM358是双运算放大器。
内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式。
6.2.3LM358特性
直流电压增益高(约100dB)。
单位增益频带宽(约1MHz)。
电源电压范围宽:
单电源(3—30V);双电源(±1.5一±15V)。
低功耗电流,适合于电池供电。
低输入失调电压和失调电流。
共模输入电压范围宽,包括接地。
差模输入电压范围宽,等于电源电压范围。
输出电压摆幅大(0至Vcc-1.5V)。
6.2.4LM358参数
输入偏置电流45nA
输入失调电流50nA
输入失调电压2.9mV
输入共模电压最大值VCC~1.5V
3,与非门芯片CD40011
CD4011是集成了四个与非门的芯片,即可采用单电源供电,又可采用双电源供电。
5,无源式蜂鸣器与发光二极管
①无源蜂鸣器
无源蜂鸣器内部没有自带的振荡源,需要由前级输出的频率在2K-5K的方波来驱动。
试验中加一晶体管放大再接蜂鸣器增加蜂鸣器的输入功率,以保证更好的实验效果。
②发光二极管
它是半导体二极管的一种,可以把电能转化成光能。
发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。
当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。
不同的半导体材料中电子和空穴所处的能量状态不同。
当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。
常用的是发红光、绿光或黄光的二极管。
发光二极管的反向击穿电压大于5伏。
它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过二极管的电流。
限流电阻R可用下式计算:
R=(E-UF)/IF。
式中E为电源电压,UF为LED的正向压降,IF为LED的正常工作电流。
发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。
在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。
PN结加反向电压,少数载流子难以注入,故不发光。
这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。
当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。
7,课题实验心得总结
1,在选择和找资料时,一定要多了解一些不同的电路,第一次搭的电路很复杂,而且很难调试出来,以至于浪费了很多时间,后来在学姐的帮助下,知道了一个更简洁方便的电路原理图,才得以完成实验。
2.实际操作时,一定要按顺序分级搭接电路,最好使元器件横平竖直,这样不仅仅美观好看,也大大降低了出错的概率,在查找错误时也很方便。
比如做实验的过程中,出现了波形不正确不清晰的问题,电路图和仿真图对照后发现并没有错误,在改进无效后我选择了重新工整地搭接一遍电路,结果问题就解决了,由此可见是电路搭接过程中接触不良产生的问题。
3.,搭电路时要仔细,一定电路首先需要按照设计图正确的搭出来,有时候波形出不来,后来发现是某一个管脚接错或者电阻阻值用错的原因,白白浪费了很多时间,所以第一步是要把电路搭对了。
4.调试的时候一定要仔细认真,千万不要着急!
!
在实验室调试的那两天,我都几次几乎崩溃了,感觉明明就是按照仿真的来的,可是为什么就是不一样的,为什么就是出不来呢,越着急就越难找到错误的地方,所以一定要有好的心态,不要怕要调好几次,而且仿电脑仿真和实际电路还是有一定的区别的,仿真能出来,实际模拟电路不一定出的来,将电路分块,一块一块的检查,总会发现问题的。
5.实验过程还有很多技术上的问题,比如各个元件正负极的判断,参考电压的选择,延时电路与其时间常数的确定,还有各级电路的检查方法等等,而且这个电路属于比较精细的电路,有时候实际选择的元件不一定与仿真的元件参数完全相同,很多小偏差叠加在一起就会导致整个电路出现问题,,无法正常显示波形,遇到这些问题我们都是先组内讨论,如果真的解决不了再去找老师同学咨询。
参考文献,老师给的ppt,网上资源,新编电子控制电路300例
时间:
2021.02.04
创作:
欧阳育